Tropical complexes Dustin Cartwright Yale University January 9, 2013 ### Overview Analogy between algebraic curves and finite graphs. For example, Baker's specialization lemma: $$h^0(X, \mathcal{O}(D)) - 1 \le r(\operatorname{Trop} D)$$ Main goal: generalize the specialization inequality to higher dimensions. # Tropical complexes: higher-dimensional graphs An n-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each facet F, $$\sum_{v \in F} a(v, F) = -\#\{n\text{-dimensional faces containing } F\}$$ Second,... # Tropical complexes: higher-dimensional graphs An *n*-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each facet F, $$\sum_{v \in F} a(v, F) = -\#\{n\text{-dimensional faces containing } F\}$$ Second,... #### Remark A 1-dimensional tropical complex is just a graph because the extra data is forced to be $a(v, v) = -\deg(v)$. # Tropical complexes: higher-dimensional graphs An n-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each facet F, $$\sum_{v \in F} a(v, F) = -\#\{\textit{n}\text{-dimensional faces containing } F\}$$ Second, for any (n-2)-dimensional face G, we form the symmetric matrix M whose rows and columns are indexed by facets containing G with $$M_{FF'} = \begin{cases} a(F \setminus G, F) & \text{if } F = F' \\ \#\{\text{faces containing both } F \text{ and } F'\} & \text{if } F \neq F' \end{cases}$$ and we require all such M to have exactly one positive eigenvalue. A tropical complex locally has a map to a real vector space. F: (n-1)-dimensional simplex in a tropical complex Γ 4 / 13 A tropical complex locally has a map to a real vector space. F: (n-1)-dimensional simplex in a tropical complex Γ N(F): subcomplex of all simplices containing F A tropical complex locally has a map to a real vector space. F: (n-1)-dimensional simplex in a tropical complex Γ N(F): subcomplex of all simplices containing F v_1, \ldots, v_n : vertices of F w_1, \ldots, w_d : vertices of N(F) not in F 4 / 13 A tropical complex locally has a map to a real vector space. F: (n-1)-dimensional simplex in a tropical complex Γ N(F): subcomplex of all simplices containing F v_1, \ldots, v_n : vertices of F w_1, \ldots, w_d : vertices of N(F) not in F V_F : quotient vector space $\mathbb{R}^{n+d}/\big(a(v_1,F),\ldots,a(v_n,F),1,\ldots,1\big)$ ϕ_F : linear map $N(F) \to V_F$ sending v_i and w_j to images of ith and (n+i)th unit vectors respectively. 4 / 13 ## Example: two triangles meeting along an edge n = d = 2. Γ consists of two triangles sharing a common edge F. $$a_1 = a_2 = -1$$ $a_1 = -2, a_2 = 0$ $a_1 = 0, a_2 = -2$ $$a_1=0, a_2=-2$$ where a_i is shorthand for $a(v_i, F)$. A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open. • *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex. A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open. - *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex. - f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes. A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open. - *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex. - f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes. Here, $N(F)^o$ is the union of the interiors of F and of the simplices containing F. A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open. - *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex. - f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes. Here, $N(F)^o$ is the union of the interiors of F and of the simplices containing F. - A piecewise linear function f has an associated divisor, which is a formal sum of (n-1)-dimensional polyhedra supported where the function is not linear. ### Example: Tetrahedron Γ is the boundary of a tetrahedron with all a(v, F) = -1. ### Example: Tetrahedron Γ is the boundary of a tetrahedron with all a(v, F) = -1. The divisor of f is 2[E] - 2[E']. 7 / 13 Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Example: 2[E] - 2[E'] is a principal divisor. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Example: 2[E] - 2[E'] is a principal divisor. A Cartier divisor is locally the divisor of a piecewise linear function. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Example: 2[E] - 2[E'] is a principal divisor. A Cartier divisor is locally the divisor of a piecewise linear function. Example: 2[E] is a Cartier divisor. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Example: 2[E] - 2[E'] is a principal divisor. - A Cartier divisor is locally the divisor of a piecewise linear function. Example: 2[E] is a Cartier divisor. - A Q-Cartier divisor has some multiple which is Cartier. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: • A principal divisor is the divisor of a global piecewise linear function on Γ . Example: 2[E] - 2[E'] is a principal divisor. - A Cartier divisor is locally the divisor of a piecewise linear function. Example: 2[E] is a Cartier divisor. - A Q-Cartier divisor has some multiple which is Cartier. Example: [E] is a \mathbb{Q} -Cartier divisor. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: - A principal divisor is the divisor of a global piecewise linear function on Γ . - Example: 2[E] 2[E'] is a principal divisor. - A Cartier divisor is locally the divisor of a piecewise linear function. Example: 2[E] is a Cartier divisor. - A Q-Cartier divisor has some multiple which is Cartier. Example: [E] is a Q-Cartier divisor. - A Weil divisor is \mathbb{Q} -Cartier except for a set of dimension at most n-3. Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions: - A principal divisor is the divisor of a global piecewise linear function on Γ . - Example: 2[E] 2[E'] is a principal divisor. - A Cartier divisor is locally the divisor of a piecewise linear function. Example: 2[E] is a Cartier divisor. - A Q-Cartier divisor has some multiple which is Cartier. Example: [E] is a Q-Cartier divisor. - A Weil divisor is \mathbb{Q} -Cartier except for a set of dimension at most n-3. Why n-3? Roughly, Weil divisors are balanced, which is a condition in dimension n-2. - Two divisors are linearly equivalent if their difference is principal. - A divisor is effective if its coefficients are all positive. - Two divisors are linearly equivalent if their difference is principal. - A divisor is effective if its coefficients are all positive. #### Definition Let Γ be a tropical complex and D a Weil divisor on it. Define $h^0(\Gamma,D) \in [0,\infty]$ to be the smallest integer k such that there exist k rational points x_1,\ldots,x_k in Γ such that D is not linearly equivalent to any effective divisor containing all the x_i . Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field. Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field. • Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} . Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field. - Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} . - For any $I \subset [n]$, any component of $\bigcap_{i \in I} C_i$ is called a stratum. Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field. - Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} . - For any $I \subset [n]$, any component of $\bigcap_{i \in I} C_i$ is called a stratum. - The dual complex is a Δ -complex with one k-dimensional cell for each (n-k)-dimensional stratum. The faces of a cell correspond to strata containing a given one. We assume that the open strata (the difference of one stratum minus all strata strictly contained in it) are affine. Then, dual complex is also a tropical complex: • a(v, F) is the self-intersection of the curve corresponding to F in the surface corresponding to $F \setminus v$, the face of F not containing v. # Specialization inequality If D is a divisor on the general fiber of \mathfrak{X} , then define $$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$ where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F. ## Specialization inequality If D is a divisor on the general fiber of \mathfrak{X} , then define $$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$ where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F. ### Proposition $\mathsf{Trop}(D)$ is a Weil divisor. # Specialization inequality If D is a divisor on the general fiber of \mathfrak{X} , then define $$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$ where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F. ### Proposition $\mathsf{Trop}(D)$ is a Weil divisor. #### **Theorem** Under our hypotheses on $\mathfrak X$ (or somewhat weaker), for any divisor on the general fiber of $\mathfrak X$, $$h^0(X, \mathcal{O}(D)) \leq h^0(\Gamma, \operatorname{Trop} D)$$ # Summary of other results #### Comparison theorem: • Equality of curve-divisor intersection numbers. ### Summary of other results #### Comparison theorem: Equality of curve-divisor intersection numbers. #### Combinatorial theorems: Tropical Hodge index theorem. # Summary of other results #### Comparison theorem: Equality of curve-divisor intersection numbers. #### Combinatorial theorems: - Tropical Hodge index theorem. - Tropical Noether's formula: $$12\chi(\Gamma)=\int_{\Gamma}c_1^2+c_2$$