Tropical complexes

Dustin Cartwright

Yale University

January 9, 2013

Overview

Analogy between algebraic curves and finite graphs. For example, Baker's specialization lemma:

$$
h^{0}(X, \mathcal{O}(D))-1 \leq r(\operatorname{Trop} D)
$$

Main goal: generalize the specialization inequality to higher dimensions.

Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite Δ-complex Γ with simplices of dimension at most n, together with integers $a(v, F)$ for every ($n-1$)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:
First, for each facet F,

$$
\sum_{v \in F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second,...

Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite Δ-complex Γ with simplices of dimension at most n, together with integers $a(v, F)$ for every ($n-1$)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:
First, for each facet F,

$$
\sum_{v \in F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second,...
Remark
A 1-dimensional tropical complex is just a graph because the extra data is forced to be $a(v, v)=-\operatorname{deg}(v)$.

Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite Δ-complex Γ with simplices of dimension at most n, together with integers $a(v, F)$ for every ($n-1$)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:
First, for each facet F,

$$
\sum_{v \in F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second, for any ($n-2$)-dimensional face G, we form the symmetric matrix M whose rows and columns are indexed by facets containing G with

$$
M_{F F^{\prime}}= \begin{cases}a(F \backslash G, F) & \text { if } F=F^{\prime} \\ \#\left\{\text { faces containing both } F \text { and } F^{\prime}\right\} & \text { if } F \neq F^{\prime}\end{cases}
$$

and we require all such M to have exactly one positive eigenvalue.

Local charts

A tropical complex locally has a map to a real vector space.
$F:(n-1)$-dimensional simplex in a tropical complex Γ

Local charts

A tropical complex locally has a map to a real vector space.
$F:(n-1)$-dimensional simplex in a tropical complex Γ $N(F)$: subcomplex of all simplices containing F

Local charts

A tropical complex locally has a map to a real vector space.
$F:(n-1)$-dimensional simplex in a tropical complex Γ $N(F)$: subcomplex of all simplices containing F v_{1}, \ldots, v_{n} : vertices of F
w_{1}, \ldots, w_{d} : vertices of $N(F)$ not in F

Local charts

A tropical complex locally has a map to a real vector space.
$F:(n-1)$-dimensional simplex in a tropical complex Γ $N(F)$: subcomplex of all simplices containing F v_{1}, \ldots, v_{n} : vertices of F
w_{1}, \ldots, w_{d} : vertices of $N(F)$ not in F
V_{F} : quotient vector space $\mathbb{R}^{n+d} /\left(a\left(v_{1}, F\right), \ldots, a\left(v_{n}, F\right), 1, \ldots, 1\right)$ ϕ_{F} : linear map $N(F) \rightarrow V_{F}$ sending v_{i} and w_{j} to images of i th and $(n+i)$ th unit vectors respectively.

Example: two triangles meeting along an edge

$n=d=2$.
Γ consists of two triangles sharing a common edge F.

$$
a_{1}=a_{2}=-1 \quad a_{1}=-2, a_{2}=0
$$

$$
a_{1}=0, a_{2}=-2
$$

where a_{i} is shorthand for $a\left(v_{i}, F\right)$.

Linear and piecewise linear functions

A continuous function $f: U \rightarrow \mathbb{R}$, where $U \subset \Gamma$ open.

- f is piecewise linear if it is piecewise linear with integral slopes on each simplex.

Linear and piecewise linear functions

A continuous function $f: U \rightarrow \mathbb{R}$, where $U \subset \Gamma$ open.

- f is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^{\circ}$ if on each $N(F)^{\circ}$, it is the composition of ϕ_{F} followed by an affine linear function with integral slopes.

Linear and piecewise linear functions

A continuous function $f: U \rightarrow \mathbb{R}$, where $U \subset \Gamma$ open.

- f is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^{\circ}$ if on each $N(F)^{\circ}$, it is the composition of ϕ_{F} followed by an affine linear function with integral slopes. Here, $N(F)^{\circ}$ is the union of the interiors of F and of the simplices containing F.

Linear and piecewise linear functions

A continuous function $f: U \rightarrow \mathbb{R}$, where $U \subset \Gamma$ open.

- f is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^{\circ}$ if on each $N(F)^{\circ}$, it is the composition of ϕ_{F} followed by an affine linear function with integral slopes. Here, $N(F)^{\circ}$ is the union of the interiors of F and of the simplices containing F.
- A piecewise linear function f has an associated divisor, which is a formal sum of $(n-1)$-dimensional polyhedra supported where the function is not linear.

Example: Tetrahedron

Γ is the boundary of a tetrahedron with all $a(v, F)=-1$.

Example: Tetrahedron

Γ is the boundary of a tetrahedron with all $a(v, F)=-1$.

The divisor of f is $2[E]-2\left[E^{\prime}\right]$.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Example: $2[E]$ is a Cartier divisor.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Example: $2[E]$ is a Cartier divisor.

- A \mathbb{Q}-Cartier divisor has some multiple which is Cartier.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Example: $2[E]$ is a Cartier divisor.

- A \mathbb{Q}-Cartier divisor has some multiple which is Cartier.

Example: $[E]$ is a \mathbb{Q}-Cartier divisor.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Example: $2[E]$ is a Cartier divisor.

- A \mathbb{Q}-Cartier divisor has some multiple which is Cartier.

Example: $[E]$ is a \mathbb{Q}-Cartier divisor.

- A Weil divisor is \mathbb{Q}-Cartier except for a set of dimension at most $n-3$.

Divisors

Divisors are formal sums of $(n-1)$-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ.

Example: $2[E]-2\left[E^{\prime}\right]$ is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

Example: $2[E]$ is a Cartier divisor.

- A \mathbb{Q}-Cartier divisor has some multiple which is Cartier.

$$
\text { Example: }[E] \text { is a } \mathbb{Q} \text {-Cartier divisor. }
$$

- A Weil divisor is \mathbb{Q}-Cartier except for a set of dimension at most $n-3$. Why $n-3$? Roughly, Weil divisors are balanced, which is a condition in dimension $n-2$.
- Two divisors are linearly equivalent if their difference is principal.
- A divisor is effective if its coefficients are all positive.
- Two divisors are linearly equivalent if their difference is principal.
- A divisor is effective if its coefficients are all positive.

Definition

Let Γ be a tropical complex and D a Weil divisor on it. Define $h^{0}(\Gamma, D) \in[0, \infty]$ to be the smallest integer k such that there exist k rational points x_{1}, \ldots, x_{k} in Γ such that D is not linearly equivalent to any effective divisor containing all the x_{i}.

Dual complex of a semistable degeneration

Let \mathfrak{X} be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

Dual complex of a semistable degeneration

Let \mathfrak{X} be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

- Let C_{1}, \ldots, C_{n} denote the components of the special fiber of \mathfrak{X}.

Dual complex of a semistable degeneration

Let \mathfrak{X} be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

- Let C_{1}, \ldots, C_{n} denote the components of the special fiber of \mathfrak{X}.
- For any $I \subset[n]$, any component of $\cap_{i \in I} C_{i}$ is called a stratum.

Dual complex of a semistable degeneration

Let \mathfrak{X} be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

- Let C_{1}, \ldots, C_{n} denote the components of the special fiber of \mathfrak{X}.
- For any $I \subset[n]$, any component of $\cap_{i \in I} C_{i}$ is called a stratum.
- The dual complex is a Δ-complex with one k-dimensional cell for each $(n-k)$-dimensional stratum. The faces of a cell correspond to strata containing a given one.

Tropical complex of a semistable degeneration

We assume that the open strata (the difference of one stratum minus all strata strictly contained in it) are affine. Then, dual complex is also a tropical complex:

- $a(v, F)$ is the self-intersection of the curve corresponding to F in the surface corresponding to $F \backslash v$, the face of F not containing v.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X}, then define

$$
\operatorname{Trop}(D)=\sum_{F \in \Gamma^{(n-1)}}\left(\bar{D} \cdot C_{F}\right)[F],
$$

where \bar{D} is the closure of D in \mathfrak{X}, and C_{F} is the 1-dimensional stratum corresponding to the facet F.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X}, then define

$$
\operatorname{Trop}(D)=\sum_{F \in \Gamma^{(n-1)}}\left(\bar{D} \cdot C_{F}\right)[F]
$$

where \bar{D} is the closure of D in \mathfrak{X}, and C_{F} is the 1-dimensional stratum corresponding to the facet F.

Proposition
$\operatorname{Trop}(D)$ is a Weil divisor.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X}, then define

$$
\operatorname{Trop}(D)=\sum_{F \in \Gamma^{(n-1)}}\left(\bar{D} \cdot C_{F}\right)[F],
$$

where \bar{D} is the closure of D in \mathfrak{X}, and C_{F} is the 1-dimensional stratum corresponding to the facet F.

Proposition
Trop (D) is a Weil divisor.

Theorem

Under our hypotheses on \mathfrak{X} (or somewhat weaker), for any divisor on the general fiber of \mathfrak{X},

$$
h^{0}(X, \mathcal{O}(D)) \leq h^{0}(\Gamma, \text { Trop } D)
$$

Summary of other results

Comparison theorem:

- Equality of curve-divisor intersection numbers.

Summary of other results

Comparison theorem:

- Equality of curve-divisor intersection numbers.

Combinatorial theorems:

- Tropical Hodge index theorem.

Summary of other results

Comparison theorem:

- Equality of curve-divisor intersection numbers.

Combinatorial theorems:

- Tropical Hodge index theorem.
- Tropical Noether's formula:

$$
12 \chi(\Gamma)=\int_{\Gamma} c_{1}^{2}+c_{2}
$$

