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Overview

Analogy between algebraic curves and finite graphs. For example, Baker’s
specialization lemma:

h0(X ,O(D))− 1 ≤ r(Trop D)

Main goal: generalize the specialization inequality to higher dimensions.
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Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite ∆-complex Γ with simplices
of dimension at most n, together with integers a(v ,F ) for every
(n − 1)-dimensional face (facet) F and vertex v ∈ F , such that Γ satisfies
the following two conditions:
First, for each facet F ,∑

v∈F
a(v ,F ) = −#{n-dimensional faces containing F}

Second,...

Remark

A 1-dimensional tropical complex is just a graph because the extra data is
forced to be a(v , v) = − deg(v).
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of dimension at most n, together with integers a(v ,F ) for every
(n − 1)-dimensional face (facet) F and vertex v ∈ F , such that Γ satisfies
the following two conditions:
First, for each facet F ,∑

v∈F
a(v ,F ) = −#{n-dimensional faces containing F}

Second, for any (n− 2)-dimensional face G , we form the symmetric matrix
M whose rows and columns are indexed by facets containing G with

MFF ′ =

{
a(F \ G ,F ) if F = F ′

#{faces containing both F and F ′} if F 6= F ′

and we require all such M to have exactly one positive eigenvalue.
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Local charts

A tropical complex locally has a map to a real vector space.

F : (n − 1)-dimensional simplex in a tropical complex Γ

N(F ) : subcomplex of all simplices containing F

v1, . . . , vn : vertices of F

w1, . . . ,wd : vertices of N(F ) not in F

VF : quotient vector space Rn+d/
(
a(v1,F ), . . . , a(vn,F ), 1, . . . , 1

)
φF : linear map N(F )→ VF sending vi and wj to images of ith

and (n + i)th unit vectors respectively.

v1

v2

w1

w2

w3

F
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Example: two triangles meeting along an edge

n = d = 2.
Γ consists of two triangles sharing a common edge F .

v2

v1

v2

v1

v2

v1

a1 = a2 = −1 a1 = −2, a2 = 0 a1 = 0, a2 = −2
where ai is shorthand for a(vi ,F ).
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Linear and piecewise linear functions

A continuous function f : U → R, where U ⊂ Γ open.

f is piecewise linear if it is piecewise linear with integral slopes on
each simplex.

f is linear if for each N(F )o if on each N(F )o , it is the composition of
φF followed by an affine linear function with integral slopes. Here,
N(F )o is the union of the interiors of F and of the simplices
containing F .

A piecewise linear function f has an associated divisor, which is a
formal sum of (n − 1)-dimensional polyhedra supported where the
function is not linear.
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Example: Tetrahedron

Γ is the boundary of a tetrahedron with all a(v ,F ) = −1.

E

E’

f

0

1

The divisor of f is 2[E ]− 2[E ′].
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Divisors

Divisors are formal sums of (n − 1)-dimensional polyhedra satisfying
certain conditions:

A principal divisor is the divisor of a global piecewise linear function
on Γ.

Example: 2[E ]− 2[E ′] is a principal divisor.

A Cartier divisor is locally the divisor of a piecewise linear function.
Example: 2[E ] is a Cartier divisor.

A Q-Cartier divisor has some multiple which is Cartier.
Example: [E ] is a Q-Cartier divisor.

A Weil divisor is Q-Cartier except for a set of dimension at most n−3.

Why n − 3? Roughly, Weil divisors are balanced, which is a condition in
dimension n − 2.
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h0

Two divisors are linearly equivalent if their difference is principal.

A divisor is effective if its coefficients are all positive.

Definition

Let Γ be a tropical complex and D a Weil divisor on it. Define
h0(Γ,D) ∈ [0,∞] to be the smallest integer k such that there exist
k rational points x1, . . . , xk in Γ such that D is not linearly equivalent to
any effective divisor containing all the xi .
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Dual complex of a semistable degeneration

Let X be a regular semistable model over a discrete valuation ring R with
algebraically closed residue field.

Let C1, . . . ,Cn denote the components of the special fiber of X.

For any I ⊂ [n], any component of ∩i∈ICi is called a stratum.

The dual complex is a ∆-complex with one k-dimensional cell for
each (n − k)-dimensional stratum. The faces of a cell correspond to
strata containing a given one.

Dustin Cartwright (Yale University) Tropical complexes January 9, 2013 10 / 13



Dual complex of a semistable degeneration

Let X be a regular semistable model over a discrete valuation ring R with
algebraically closed residue field.

Let C1, . . . ,Cn denote the components of the special fiber of X.

For any I ⊂ [n], any component of ∩i∈ICi is called a stratum.

The dual complex is a ∆-complex with one k-dimensional cell for
each (n − k)-dimensional stratum. The faces of a cell correspond to
strata containing a given one.

Dustin Cartwright (Yale University) Tropical complexes January 9, 2013 10 / 13



Dual complex of a semistable degeneration

Let X be a regular semistable model over a discrete valuation ring R with
algebraically closed residue field.

Let C1, . . . ,Cn denote the components of the special fiber of X.

For any I ⊂ [n], any component of ∩i∈ICi is called a stratum.

The dual complex is a ∆-complex with one k-dimensional cell for
each (n − k)-dimensional stratum. The faces of a cell correspond to
strata containing a given one.

Dustin Cartwright (Yale University) Tropical complexes January 9, 2013 10 / 13



Dual complex of a semistable degeneration

Let X be a regular semistable model over a discrete valuation ring R with
algebraically closed residue field.

Let C1, . . . ,Cn denote the components of the special fiber of X.

For any I ⊂ [n], any component of ∩i∈ICi is called a stratum.

The dual complex is a ∆-complex with one k-dimensional cell for
each (n − k)-dimensional stratum. The faces of a cell correspond to
strata containing a given one.

Dustin Cartwright (Yale University) Tropical complexes January 9, 2013 10 / 13



Tropical complex of a semistable degeneration

We assume that the open strata (the difference of one stratum minus all
strata strictly contained in it) are affine. Then, dual complex is also a
tropical complex:

a(v ,F ) is the self-intersection of the curve corresponding to F in the
surface corresponding to F \ v , the face of F not containing v .
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Specialization inequality

If D is a divisor on the general fiber of X, then define

Trop(D) =
∑

F∈Γ(n−1)

(D · CF )[F ],

where D is the closure of D in X, and CF is the 1-dimensional stratum
corresponding to the facet F .

Proposition

Trop(D) is a Weil divisor.

Theorem

Under our hypotheses on X (or somewhat weaker), for any divisor on the
general fiber of X,

h0(X ,O(D)) ≤ h0(Γ,Trop D)
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Summary of other results

Comparison theorem:

Equality of curve-divisor intersection numbers.

Combinatorial theorems:

Tropical Hodge index theorem.

Tropical Noether’s formula:

12χ(Γ) =

∫
Γ

c2
1 + c2
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