Tropical complexes

Dustin Cartwright

Yale University

January 9, 2013

Overview

Analogy between algebraic curves and finite graphs. For example, Baker's specialization lemma:

$$h^0(X, \mathcal{O}(D)) - 1 \le r(\operatorname{Trop} D)$$

Main goal: generalize the specialization inequality to higher dimensions.

Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:

First, for each facet F,

$$\sum_{v \in F} a(v, F) = -\#\{n\text{-dimensional faces containing } F\}$$

Second,...

Tropical complexes: higher-dimensional graphs

An *n*-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:

First, for each facet F,

$$\sum_{v \in F} a(v, F) = -\#\{n\text{-dimensional faces containing } F\}$$

Second,...

Remark

A 1-dimensional tropical complex is just a graph because the extra data is forced to be $a(v, v) = -\deg(v)$.

Tropical complexes: higher-dimensional graphs

An n-dimensional tropical complex is a finite Δ -complex Γ with simplices of dimension at most n, together with integers a(v,F) for every (n-1)-dimensional face (facet) F and vertex $v \in F$, such that Γ satisfies the following two conditions:

First, for each facet F,

$$\sum_{v \in F} a(v, F) = -\#\{\textit{n}\text{-dimensional faces containing } F\}$$

Second, for any (n-2)-dimensional face G, we form the symmetric matrix M whose rows and columns are indexed by facets containing G with

$$M_{FF'} = \begin{cases} a(F \setminus G, F) & \text{if } F = F' \\ \#\{\text{faces containing both } F \text{ and } F'\} & \text{if } F \neq F' \end{cases}$$

and we require all such M to have exactly one positive eigenvalue.

A tropical complex locally has a map to a real vector space.

F: (n-1)-dimensional simplex in a tropical complex Γ

4 / 13

A tropical complex locally has a map to a real vector space.

F: (n-1)-dimensional simplex in a tropical complex Γ N(F): subcomplex of all simplices containing F

A tropical complex locally has a map to a real vector space.

F: (n-1)-dimensional simplex in a tropical complex Γ

N(F): subcomplex of all simplices containing F

 v_1, \ldots, v_n : vertices of F

 w_1, \ldots, w_d : vertices of N(F) not in F

4 / 13

A tropical complex locally has a map to a real vector space.

F: (n-1)-dimensional simplex in a tropical complex Γ

N(F): subcomplex of all simplices containing F

 v_1, \ldots, v_n : vertices of F

 w_1, \ldots, w_d : vertices of N(F) not in F

 V_F : quotient vector space $\mathbb{R}^{n+d}/\big(a(v_1,F),\ldots,a(v_n,F),1,\ldots,1\big)$

 ϕ_F : linear map $N(F) \to V_F$ sending v_i and w_j to images of ith and (n+i)th unit vectors respectively.

4 / 13

Example: two triangles meeting along an edge

n = d = 2.

 Γ consists of two triangles sharing a common edge F.

$$a_1 = a_2 = -1$$
 $a_1 = -2, a_2 = 0$ $a_1 = 0, a_2 = -2$

$$a_1=0, a_2=-2$$

where a_i is shorthand for $a(v_i, F)$.

A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open.

• *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex.

A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open.

- *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes.

A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open.

- *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes. Here, $N(F)^o$ is the union of the interiors of F and of the simplices containing F.

A continuous function $f: U \to \mathbb{R}$, where $U \subset \Gamma$ open.

- *f* is piecewise linear if it is piecewise linear with integral slopes on each simplex.
- f is linear if for each $N(F)^o$ if on each $N(F)^o$, it is the composition of ϕ_F followed by an affine linear function with integral slopes. Here, $N(F)^o$ is the union of the interiors of F and of the simplices containing F.
- A piecewise linear function f has an associated divisor, which is a formal sum of (n-1)-dimensional polyhedra supported where the function is not linear.

Example: Tetrahedron

 Γ is the boundary of a tetrahedron with all a(v, F) = -1.

Example: Tetrahedron

 Γ is the boundary of a tetrahedron with all a(v, F) = -1.

The divisor of f is 2[E] - 2[E'].

7 / 13

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Example: 2[E] - 2[E'] is a principal divisor.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Example: 2[E] - 2[E'] is a principal divisor.

A Cartier divisor is locally the divisor of a piecewise linear function.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Example: 2[E] - 2[E'] is a principal divisor.

A Cartier divisor is locally the divisor of a piecewise linear function.
 Example: 2[E] is a Cartier divisor.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Example: 2[E] - 2[E'] is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

 Example: 2[E] is a Cartier divisor.
- A Q-Cartier divisor has some multiple which is Cartier.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

• A principal divisor is the divisor of a global piecewise linear function on Γ .

Example: 2[E] - 2[E'] is a principal divisor.

- A Cartier divisor is locally the divisor of a piecewise linear function.

 Example: 2[E] is a Cartier divisor.
- A Q-Cartier divisor has some multiple which is Cartier.

Example: [E] is a \mathbb{Q} -Cartier divisor.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ .
 - Example: 2[E] 2[E'] is a principal divisor.
- A Cartier divisor is locally the divisor of a piecewise linear function.

 Example: 2[E] is a Cartier divisor.
- A Q-Cartier divisor has some multiple which is Cartier.
 Example: [E] is a Q-Cartier divisor.
- A Weil divisor is \mathbb{Q} -Cartier except for a set of dimension at most n-3.

Divisors are formal sums of (n-1)-dimensional polyhedra satisfying certain conditions:

- A principal divisor is the divisor of a global piecewise linear function on Γ .
 - Example: 2[E] 2[E'] is a principal divisor.
- A Cartier divisor is locally the divisor of a piecewise linear function.

 Example: 2[E] is a Cartier divisor.
- A Q-Cartier divisor has some multiple which is Cartier.
 Example: [E] is a Q-Cartier divisor.
- A Weil divisor is \mathbb{Q} -Cartier except for a set of dimension at most n-3.

Why n-3? Roughly, Weil divisors are balanced, which is a condition in dimension n-2.

- Two divisors are linearly equivalent if their difference is principal.
- A divisor is effective if its coefficients are all positive.

- Two divisors are linearly equivalent if their difference is principal.
- A divisor is effective if its coefficients are all positive.

Definition

Let Γ be a tropical complex and D a Weil divisor on it. Define $h^0(\Gamma,D) \in [0,\infty]$ to be the smallest integer k such that there exist k rational points x_1,\ldots,x_k in Γ such that D is not linearly equivalent to any effective divisor containing all the x_i .

Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

• Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} .

Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

- Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} .
- For any $I \subset [n]$, any component of $\bigcap_{i \in I} C_i$ is called a stratum.

Let $\mathfrak X$ be a regular semistable model over a discrete valuation ring R with algebraically closed residue field.

- Let C_1, \ldots, C_n denote the components of the special fiber of \mathfrak{X} .
- For any $I \subset [n]$, any component of $\bigcap_{i \in I} C_i$ is called a stratum.
- The dual complex is a Δ -complex with one k-dimensional cell for each (n-k)-dimensional stratum. The faces of a cell correspond to strata containing a given one.

We assume that the open strata (the difference of one stratum minus all strata strictly contained in it) are affine. Then, dual complex is also a tropical complex:

• a(v, F) is the self-intersection of the curve corresponding to F in the surface corresponding to $F \setminus v$, the face of F not containing v.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X} , then define

$$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$

where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X} , then define

$$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$

where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F.

Proposition

 $\mathsf{Trop}(D)$ is a Weil divisor.

Specialization inequality

If D is a divisor on the general fiber of \mathfrak{X} , then define

$$\mathsf{Trop}(D) = \sum_{F \in \Gamma^{(n-1)}} (\overline{D} \cdot C_F)[F],$$

where \overline{D} is the closure of D in \mathfrak{X} , and C_F is the 1-dimensional stratum corresponding to the facet F.

Proposition

 $\mathsf{Trop}(D)$ is a Weil divisor.

Theorem

Under our hypotheses on $\mathfrak X$ (or somewhat weaker), for any divisor on the general fiber of $\mathfrak X$,

$$h^0(X, \mathcal{O}(D)) \leq h^0(\Gamma, \operatorname{Trop} D)$$

Summary of other results

Comparison theorem:

• Equality of curve-divisor intersection numbers.

Summary of other results

Comparison theorem:

Equality of curve-divisor intersection numbers.

Combinatorial theorems:

Tropical Hodge index theorem.

Summary of other results

Comparison theorem:

Equality of curve-divisor intersection numbers.

Combinatorial theorems:

- Tropical Hodge index theorem.
- Tropical Noether's formula:

$$12\chi(\Gamma)=\int_{\Gamma}c_1^2+c_2$$