
From Arabidopsis roots to bilinear equations

Dustin Cartwright 1

October 22, 2008

1joint with Philip Benfey, Siobhan Brady, David Orlando (Duke University)
and Bernd Sturmfels (UC Berkeley), research supported by the DARPA project
Fundamental Laws of Biology



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.

Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Measurement along two axes

I Markers measure variation among cell types.

I Longitudinal sections measure variation along developmental
stage.

Näıve approach would use variation among each set of experiments
as proxies for variation along each of the two axes.



Measurement along two axes

I Markers measure variation among cell types.

I Longitudinal sections measure variation along developmental
stage.

Näıve approach would use variation among each set of experiments
as proxies for variation along each of the two axes.



Measurement along two axes

I Markers measure variation among cell types.

I Longitudinal sections measure variation along developmental
stage.

Näıve approach would use variation among each set of experiments
as proxies for variation along each of the two axes.



Problem with näıve approach

Correspondence between markers and cell types is imperfect.

For example, the sample labelled APL consists of mixture of two
cell types:

cell type
section phloem phloem companion cells

12 1
16

1
16

...
...

...
7 1

16
1
16

6 1
16 0

...
...

...
3 1

16 0
2 0 0
1 0 0

columella 0 0



Problem with näıve approach

Correspondence between markers and cell types is imperfect.
For example, the sample labelled APL consists of mixture of two
cell types:

cell type
section phloem phloem companion cells

12 1
16

1
16

...
...

...
7 1

16
1
16

6 1
16 0

...
...

...
3 1

16 0
2 0 0
1 0 0

columella 0 0



Problem with näıve approach

Similarly, the longitudinal sections do not have the same mixture of
cells. For example:

I In each of sections 1-5, 30-50% of the cells are lateral root
cap cells.

I In sections 6-12, there are no lateral root cap cells.

Conclusion: Need to analyze each transcript across all 31
(= 13 + 18) experiments to model the expression pattern in the
whole root.



Problem with näıve approach

Similarly, the longitudinal sections do not have the same mixture of
cells. For example:

I In each of sections 1-5, 30-50% of the cells are lateral root
cap cells.

I In sections 6-12, there are no lateral root cap cells.

Conclusion: Need to analyze each transcript across all 31
(= 13 + 18) experiments to model the expression pattern in the
whole root.



Problem with näıve approach

Similarly, the longitudinal sections do not have the same mixture of
cells. For example:

I In each of sections 1-5, 30-50% of the cells are lateral root
cap cells.

I In sections 6-12, there are no lateral root cap cells.

Conclusion: Need to analyze each transcript across all 31
(= 13 + 18) experiments to model the expression pattern in the
whole root.



Model

I A cluster consists of cells of the same type in the same
section. Each cluster has an expression level.

I For each marker and each longitudinal section, we have a
measurement functional, a linear combination of the
expression levels in different clusters. The coefficients of these
functionals can be determined from:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) functionals and 129
clusters.



Model

I A cluster consists of cells of the same type in the same
section. Each cluster has an expression level.

I For each marker and each longitudinal section, we have a
measurement functional, a linear combination of the
expression levels in different clusters.

The coefficients of these
functionals can be determined from:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) functionals and 129
clusters.



Model

I A cluster consists of cells of the same type in the same
section. Each cluster has an expression level.

I For each marker and each longitudinal section, we have a
measurement functional, a linear combination of the
expression levels in different clusters. The coefficients of these
functionals can be determined from:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) functionals and 129
clusters.



Model

I A cluster consists of cells of the same type in the same
section. Each cluster has an expression level.

I For each marker and each longitudinal section, we have a
measurement functional, a linear combination of the
expression levels in different clusters. The coefficients of these
functionals can be determined from:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) functionals and 129
clusters.



Assumption

Since the system is under constrained, we make the following
assumption.

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level of cluster in section i and
type j is xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.



Assumption

Since the system is under constrained, we make the following
assumption.

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level of cluster in section i and
type j is xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.



Assumption

Since the system is under constrained, we make the following
assumption.

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level of cluster in section i and
type j is xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.



Assumption

Since the system is under constrained, we make the following
assumption.

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level of cluster in section i and
type j is xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.



Non-negative bilinear equations

A(1), . . . ,A(k) n ×m non-negative matrices (cell mixture)

o1, . . . , ok non-negative scalars (expression levels)

Solve (approximately)

f1(x , y) := x tA(1)y = o1

...

fk(x , y) := x tA(k)y = ok

x1 + · · ·+ xn = 1

for x and y non-negative vectors of dimensions n × 1 and m × 1
respectively.



Non-negative bilinear equations

A(1), . . . ,A(k) n ×m non-negative matrices (cell mixture)

o1, . . . , ok non-negative scalars (expression levels)

Solve (approximately)

f1(x , y) := x tA(1)y = o1

...

fk(x , y) := x tA(k)y = ok

x1 + · · ·+ xn = 1

for x and y non-negative vectors of dimensions n × 1 and m × 1
respectively.



Probabilistic interpretation

f`(x , y) :=
∑
i ,j

A
(`)
ij xiyj for ` = 1, . . . , k

Up to scaling, this vector has the form of the family of probability
distributions (depending on vectors x and y)

coming from the
following process:

1. Pick a pair of integers from {1, . . . , n} × {1, . . . ,m} with (i , j)
having probability proportional to(∑

` A
(`)
ij

)
xiyj

2. Output an integer from {1, . . . , k}. Conditional on having
picked i and j in the previous step, the probability of
outputing ` is:

A
(`)
ij /
(∑

` A
(`)
ij

)



Probabilistic interpretation

f`(x , y) :=
∑
i ,j

A
(`)
ij xiyj for ` = 1, . . . , k

Up to scaling, this vector has the form of the family of probability
distributions (depending on vectors x and y) coming from the
following process:

1. Pick a pair of integers from {1, . . . , n} × {1, . . . ,m} with (i , j)
having probability proportional to(∑

` A
(`)
ij

)
xiyj

2. Output an integer from {1, . . . , k}. Conditional on having
picked i and j in the previous step, the probability of
outputing ` is:

A
(`)
ij /
(∑

` A
(`)
ij

)



Probabilistic interpretation

f`(x , y) :=
∑
i ,j

A
(`)
ij xiyj for ` = 1, . . . , k

Up to scaling, this vector has the form of the family of probability
distributions (depending on vectors x and y) coming from the
following process:

1. Pick a pair of integers from {1, . . . , n} × {1, . . . ,m} with (i , j)
having probability proportional to(∑

` A
(`)
ij

)
xiyj

2. Output an integer from {1, . . . , k}. Conditional on having
picked i and j in the previous step, the probability of
outputing ` is:

A
(`)
ij /
(∑

` A
(`)
ij

)



Maximum Likelihood Estimation

Rescaling both sides of our system of equations:

f`(x , y)∑
`′ f`′(x , y)

=
o`∑
`′ o`′

for ` = 1, . . . , k

Finding an approximate solution to these equations is known as
Maximum Likelihood Estimation.



Maximum Likelihood Estimation

Rescaling both sides of our system of equations:

f`(x , y)∑
`′ f`′(x , y)

=
o`∑
`′ o`′

for ` = 1, . . . , k

Finding an approximate solution to these equations is known as
Maximum Likelihood Estimation.



Kullback-Leibler divergence

Kullback-Leibler divergence gives a way of comparing two
probability distributions:

D(z‖f (x , y)) :=
∑

`

z` log

(
z`

f`(x)

)

− z` + f`(x , y)

We generalize divergence to any pair of non-negative vectors.
By approximate solution to a system, we will mean the a solution
which minimizes the Kullback-Leibler divergence.



Kullback-Leibler divergence

Kullback-Leibler divergence gives a way of comparing two
probability distributions:

D(z‖f (x , y)) :=
∑

`

z` log

(
z`

f`(x)

)
− z` + f`(x , y)

We generalize divergence to any pair of non-negative vectors.

By approximate solution to a system, we will mean the a solution
which minimizes the Kullback-Leibler divergence.



Kullback-Leibler divergence

Kullback-Leibler divergence gives a way of comparing two
probability distributions:

D(z‖f (x , y)) :=
∑

`

z` log

(
z`

f`(x)

)
− z` + f`(x , y)

We generalize divergence to any pair of non-negative vectors.
By approximate solution to a system, we will mean the a solution
which minimizes the Kullback-Leibler divergence.



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Likelihood maximization for monomial models

g : Rn × Rm → Rnm

(xi ), (yj) 7→ Aijxiyj

where Aij =
∑

` A
(`)
ij .

Moment map (taking row sums and column sums):

µ : Rnm → Rn × Rm

bij 7→
(∑

j

bij

)
,
(∑

i

bij

)

Theorem
Kullback-Leibler divergence D(z‖g(x , y)) is minimized over all x
and y when µ(z) equals µ(g(x , y)).



Likelihood maximization for monomial models

g : Rn × Rm → Rnm

(xi ), (yj) 7→ Aijxiyj

where Aij =
∑

` A
(`)
ij .

Moment map (taking row sums and column sums):

µ : Rnm → Rn × Rm

bij 7→
(∑

j

bij

)
,
(∑

i

bij

)

Theorem
Kullback-Leibler divergence D(z‖g(x , y)) is minimized over all x
and y when µ(z) equals µ(g(x , y)).



Likelihood maximization for monomial models

g : Rn × Rm → Rnm

(xi ), (yj) 7→ Aijxiyj

where Aij =
∑

` A
(`)
ij .

Moment map (taking row sums and column sums):

µ : Rnm → Rn × Rm

bij 7→
(∑

j

bij

)
,
(∑

i

bij

)

Theorem
Kullback-Leibler divergence D(z‖g(x , y)) is minimized over all x
and y when µ(z) equals µ(g(x , y)).



Inverting the moment map: Iterative Proportional Fitting

Rnm

µ

Rn × Rm

g(x, y)

b

µ(g(x, y)) µ(b)



Inverting the moment map: Iterative Proportional Fitting

I Adjust x̃i :

x̃i ← x̃i

∑
j bij∑

j aij x̃i ỹj

I Adjust ỹi :

ỹj ← ỹj

∑
i bij∑

i aij x̃i ỹj

I Iterate until convergence

Rnm

µ

Rn × Rm

g(x, y)

b

µ(g(x, y)) µ(b)



Validation: Preliminary results

On the left is a visual representation
of the reconstructed expression
levels.
On the right, the expression levels
for the same transcript are visualized
using GFP.


