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Gene expression
microarrays are a tool to
understand dynamics and
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cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)
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Measurement along two axes

I Markers measure variation among cell types.

I Longitudinal sections measure variation along developmental
stage.

Näıve approach would use variation among each set of experiments
as proxies for variation along each of the two axes.
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Problem with näıve approach

Correspondence between markers and cell types is imperfect.

For example, the sample labelled APL consists of mixture of two
cell types:
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Problem with näıve approach

Similarly, the longitudinal sections do not have the same mixture of
cells. For example:

I In each of sections 1-5, 30-50% of the cells are lateral root
cap cells.

I In sections 6-12, there are no lateral root cap cells.

Conclusion: Need to analyze each transcript across all 31
(= 13 + 18) experiments to model the expression pattern in the
whole root.
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Model

I A cluster consists of cells of the same type in the same
section. Each cluster has an expression level.

I For each marker and each longitudinal section, we have a
measurement functional, a linear combination of the
expression levels in different clusters. The coefficients of these
functionals can be determined from:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) functionals and 129
clusters.
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Assumption

Since the system is under constrained, we make the following
assumption.

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level of cluster in section i and
type j is xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.
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Non-negative bilinear equations

A(1), . . . ,A(k) n ×m non-negative matrices (cell mixture)

o1, . . . , ok non-negative scalars (expression levels)

Solve (approximately)

f1(x , y) := x tA(1)y = o1

...

fk(x , y) := x tA(k)y = ok

x1 + · · ·+ xn = 1

for x and y non-negative vectors of dimensions n × 1 and m × 1
respectively.
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Probabilistic interpretation

f`(x , y) :=
∑
i ,j

A
(`)
ij xiyj for ` = 1, . . . , k

Up to scaling, this vector has the form of the family of probability
distributions (depending on vectors x and y)

coming from the
following process:

1. Pick a pair of integers from {1, . . . , n} × {1, . . . ,m} with (i , j)
having probability proportional to(∑

` A
(`)
ij

)
xiyj

2. Output an integer from {1, . . . , k}. Conditional on having
picked i and j in the previous step, the probability of
outputing ` is:

A
(`)
ij /
(∑

` A
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Maximum Likelihood Estimation

Rescaling both sides of our system of equations:

f`(x , y)∑
`′ f`′(x , y)

=
o`∑
`′ o`′

for ` = 1, . . . , k

Finding an approximate solution to these equations is known as
Maximum Likelihood Estimation.
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Kullback-Leibler divergence

Kullback-Leibler divergence gives a way of comparing two
probability distributions:

D(z‖f (x , y)) :=
∑

`

z` log

(
z`

f`(x)

)

− z` + f`(x , y)

We generalize divergence to any pair of non-negative vectors.
By approximate solution to a system, we will mean the a solution
which minimizes the Kullback-Leibler divergence.
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Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

A
(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj

o` =: eij`

I Find approximate solution to system:(∑
`

A
(`)
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)
xiyj ≈

∑
`

eij` =: eij

I Repeat until convergence



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ
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Likelihood maximization for monomial models

g : Rn × Rm → Rnm

(xi ), (yj) 7→ Aijxiyj

where Aij =
∑

` A
(`)
ij .

Moment map (taking row sums and column sums):

µ : Rnm → Rn × Rm

bij 7→
(∑

j

bij

)
,
(∑

i

bij

)

Theorem
Kullback-Leibler divergence D(z‖g(x , y)) is minimized over all x
and y when µ(z) equals µ(g(x , y)).
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Inverting the moment map: Iterative Proportional Fitting
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I Adjust x̃i :

x̃i ← x̃i

∑
j bij∑

j aij x̃i ỹj

I Adjust ỹi :

ỹj ← ỹj

∑
i bij∑

i aij x̃i ỹj

I Iterate until convergence
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Validation: Preliminary results

On the left is a visual representation
of the reconstructed expression
levels.
On the right, the expression levels
for the same transcript are visualized
using GFP.


