The Hilbert Scheme of the Diagonal in a Product of Projective Spaces

Dustin Cartwright UC Berkeley

joint with Bernd Sturmfels arXiv:0901.0212

AMS Session on Combinatorial and Homological Aspects of Commutative Algebra October 25, 2009

Multigraded Hilbert Schemes

Consider a polynomial ring $S = K[z_1, \ldots, z_m]$ with a grading by an Abelian group A. For any function $h: A \to \mathbb{N}$, there exists a quasi-projective scheme Hilb_S^h which parametrizes A-homogeneous ideals $I \subset S$ where S/I has Hilbert function h.

This is the *multigraded Hilbert scheme*. [Haiman-Sturmfels 2004]

Multigraded Hilbert Schemes

Consider a polynomial ring $S = K[z_1, \ldots, z_m]$ with a grading by an Abelian group A. For any function $h: A \to \mathbb{N}$, there exists a quasi-projective scheme Hilb_S^h which parametrizes A-homogeneous ideals $I \subset S$ where S/I has Hilbert function h.

This is the *multigraded Hilbert scheme*. [Haiman-Sturmfels 2004]

Examples:

- ▶ $A = \mathbb{Z}$ with the standard grading and suitable h: Grothendieck's Hilbert scheme
- ▶ $A = \{0\}$: Hilbert scheme of h(0) points in affine m-space
- ▶ Any A and h = 0, 1: the toric Hilbert scheme

Grading by Column Degree

Let $X = (x_{ij})$ be a $d \times n$ -matrix of unknowns. Fix the polynomial ring K[X] with \mathbb{Z}^n -grading by column degree, i.e. $\deg(x_{ij}) = e_j$.

The Hilbert function of the polynomial ring K[X] equals

$$\mathbb{N}^n \to \mathbb{N}, \ (u_1, \ldots, u_n) \mapsto \prod_{i=1}^n \binom{u_i+d-1}{d-1}.$$

Grading by Column Degree

Let $X = (x_{ij})$ be a $d \times n$ -matrix of unknowns. Fix the polynomial ring K[X] with \mathbb{Z}^n -grading by column degree, i.e. $\deg(x_{ij}) = e_j$.

The Hilbert function of the polynomial ring K[X] equals

$$\mathbb{N}^n \to \mathbb{N}, \ (u_1, \ldots, u_n) \mapsto \prod_{i=1}^n \binom{u_i+d-1}{d-1}.$$

The ideal of 2×2 -minors $I_2(X)$ has the Hilbert function

$$h: \mathbb{N}^n \to \mathbb{N}, (u_1, \ldots, u_n) \mapsto \begin{pmatrix} u_1 + u_2 + \cdots + u_n + d - 1 \\ d - 1 \end{pmatrix}.$$

This talk concerns the multigraded Hilbert scheme $H_{d,n} = Hilb_S^h$.

Grading by Column Degree

Let $X = (x_{ij})$ be a $d \times n$ -matrix of unknowns. Fix the polynomial ring K[X] with \mathbb{Z}^n -grading by column degree, i.e. $\deg(x_{ij}) = e_j$.

The Hilbert function of the polynomial ring K[X] equals

$$\mathbb{N}^n \to \mathbb{N}, (u_1, \ldots, u_n) \mapsto \prod_{i=1}^n \binom{u_i + d - 1}{d - 1}.$$

The ideal of 2×2 -minors $I_2(X)$ has the Hilbert function

$$h: \mathbb{N}^n \to \mathbb{N}, \ (u_1, \ldots, u_n) \mapsto \begin{pmatrix} u_1 + u_2 + \cdots + u_n + d - 1 \\ d - 1 \end{pmatrix}.$$

This talk concerns the multigraded Hilbert scheme $H_{d,n} = Hilb_S^h$.

Geometry: points on $H_{d,n}$ represent degenerations of the diagonal in a product of projective spaces $(\mathbb{P}^{d-1})^n = \mathbb{P}^{d-1} \times \cdots \times \mathbb{P}^{d-1}$.

Conca's Conjecture

Using an idea suggested to us by Michael Brion, we proved

Theorem (conjectured by Aldo Conca)

All \mathbb{Z}^n -homogeneous ideals $I \subset K[X]$ with multigraded Hilbert function h are radical.

Conca's Conjecture

Using an idea suggested to us by Michael Brion, we proved

Theorem (conjectured by Aldo Conca)

All \mathbb{Z}^n -homogeneous ideals $I \subset K[X]$ with multigraded Hilbert function h are radical.

For any ideal in I, we can perform a generic change of coordinates in each column and take the initial ideal.

Key idea: There exists a unique monomial ideal $Z \in H_{d,n}$ which is Borel-fixed in a multigraded sense.

The Borel-fixed Ideal

For $u \in \mathbb{N}^n$, let Z_u be the ideal generated by all unknowns x_{ij} with $1 \leq j \leq n$ and $i \leq u_j$. This is a Borel-fixed prime monomial ideal. The unique Borel-fixed ideal Z on $H_{d,n}$ is the radical ideal

$$Z := \bigcap_{u \in U} Z_u.$$

$$U = \{(u_1, \dots, u_n) \in \mathbb{N}^n : u_i \le d-1 \text{ and } \sum_i u_i = (n-1)(d-1)\}.$$

The Borel-fixed Ideal

For $u \in \mathbb{N}^n$, let Z_u be the ideal generated by all unknowns x_{ij} with $1 \le j \le n$ and $i \le u_j$. This is a Borel-fixed prime monomial ideal. The unique Borel-fixed ideal Z on $H_{d,n}$ is the radical ideal

$$Z := \bigcap_{u \in U} Z_u.$$

$$U = \{(u_1, \dots, u_n) \in \mathbb{N}^n : u_i \le d-1 \text{ and } \sum_i u_i = (n-1)(d-1)\}.$$

Proposition

The simplicial complex with Stanley-Reisner ideal Z is shellable.

Corollary

Every ideal I in $H_{d,n}$ is Cohen-Macaulay.

Group Completions

The group $G^n = \operatorname{PGL}(d)^n$ acts on $H_{d,n}$ by transforming each column independently. The stabilizer of $I_2(X)$ is the diagonal subgroup $G \cong \{(A, A, \ldots, A)\}$ of G^n . Thus, the orbit of $I_2(X)$ is the homogeneous space G^n/G , and we write $\overline{G^n/G}$ for its closure.

Group Completions

The group $G^n = \operatorname{PGL}(d)^n$ acts on $H_{d,n}$ by transforming each column independently. The stabilizer of $I_2(X)$ is the diagonal subgroup $G \cong \{(A,A,\ldots,A)\}$ of G^n . Thus, the orbit of $I_2(X)$ is the homogeneous space G^n/G , and we write $\overline{G^n/G}$ for its closure.

Theorem

The equivariant compactification $\overline{G^n/G}$ is an irreducible component of the multigraded Hilbert scheme $H_{d,n}$. Its dimension is $(d^2-1)(n-1)$.

Group Completions

The group $G^n = \operatorname{PGL}(d)^n$ acts on $H_{d,n}$ by transforming each column independently. The stabilizer of $I_2(X)$ is the diagonal subgroup $G \cong \{(A,A,\ldots,A)\}$ of G^n . Thus, the orbit of $I_2(X)$ is the homogeneous space G^n/G , and we write $\overline{G^n/G}$ for its closure.

Theorem

The equivariant compactification $\overline{G^n/G}$ is an irreducible component of the multigraded Hilbert scheme $H_{d,n}$. Its dimension is $(d^2-1)(n-1)$.

In the case of n=2, $H_{d,2}$ is smooth and equals $\overline{G^2/G}$ and coincides with the classical *space of complete collineations*. Our representation as a multigraded Hilbert scheme gives explicit polynomial equations.

Yet Another Space of Trees

Here we restrict to d=2. The points of $H_{2,n}$ are degenerations of the diagonal $\mathbb{P}^1 \to (\mathbb{P}^1)^n$.

Theorem

The multigraded Hilbert scheme $H_{2,n}$ is irreducible, so it equals the compactification $\overline{G^n/G}$. In other words, every \mathbb{Z}^n -homogeneous ideal with Hilbert function h is a flat limit of $I_2(X)$.

However, $H_{2,n}$ is singular for $n \ge 4$.

Monomial Ideals in Space of Trees

Theorem

There are $2^n(n+1)^{n-2}$ monomial ideals in $H_{2,n}$, indexed by trees on n+1 unlabeled vertices with n labeled, directed edges.

Example: The Hilbert scheme $H_{2,3}$ has 32 monomial ideals, corresponding to the 8 orientations on the claw tree and to the 8 orientations on each of the 3 labeled bivalent trees.

Monomial Ideals in Space of Trees

Theorem

There are $2^n(n+1)^{n-2}$ monomial ideals in $H_{2,n}$, indexed by trees on n+1 unlabeled vertices with n labeled, directed edges.

Example: The Hilbert scheme $H_{2,3}$ has 32 monomial ideals, corresponding to the 8 orientations on the claw tree and to the 8 orientations on each of the 3 labeled bivalent trees.

We construct a graph of the monomial ideals. For any ideal *I* such that the set of initial ideals of *I* consists of exactly two monomial ideals, we draw an edge between those monomial ideals.

Theorem

For monomial ideals in $H_{2,n}$, two monomial ideals are connected by an edge iff the monomial ideals differ by either of the operations:

- 1. Move any subset of the trees attached at a vertex to an adjacent vertex.
- 2. Swap two edges that meet at a bivalent vertex.

Three Projective Planes

The smallest reducible case is d=n=3, which concerns degenerations of the diagonal plane $\mathbb{P}^2 \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Three Projective Planes

The smallest reducible case is d=n=3, which concerns degenerations of the diagonal plane $\mathbb{P}^2 \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Theorem

The multigraded Hilbert scheme $H_{3,3}$ is the reduced union of seven irreducible components, each containing a dense $\operatorname{PGL}(3)^3$ orbit:

- ▶ The 16-dimensional main component $\overline{G^3/G}$ is singular.
- ▶ Three 14-dimensional smooth components are permuted under the S_3 -action. A generic point is a reduced union of the blow-up of \mathbb{P}^2 at a point, two copies of \mathbb{P}^2 , and $\mathbb{P}^1 \times \mathbb{P}^1$.
- ▶ Three 13-dimensional smooth components are permuted under the S_3 -action. A generic point is a reduced union of three copies of \mathbb{P}^2 and \mathbb{P}^2 blown up at three points.

Poset of Monomial Ideals

Figure: Partial ordering of the monomial ideals on $H_{3,3}$