The Hilbert Scheme of the Diagonal in a Product of Projective Spaces

Dustin Cartwright UC Berkeley
joint with Bernd Sturmfels
arXiv:0901.0212

AMS Session on Combinatorial and Homological Aspects of Commutative Algebra October 25, 2009

Multigraded Hilbert Schemes

Consider a polynomial ring $S=K\left[z_{1}, \ldots, z_{m}\right]$ with a grading by an Abelian group A. For any function $h: A \rightarrow \mathbb{N}$, there exists a quasi-projective scheme $\operatorname{Hilb}_{S}^{h}$ which parametrizes A-homogeneous ideals $I \subset S$ where S / I has Hilbert function h.

This is the multigraded Hilbert scheme. [Haiman-Sturmfels 2004]

Multigraded Hilbert Schemes

Consider a polynomial ring $S=K\left[z_{1}, \ldots, z_{m}\right]$ with a grading by an Abelian group A. For any function $h: A \rightarrow \mathbb{N}$, there exists a quasi-projective scheme $\operatorname{Hilb}_{S}^{h}$ which parametrizes A-homogeneous ideals $I \subset S$ where S / I has Hilbert function h.

This is the multigraded Hilbert scheme. [Haiman-Sturmfels 2004]

Examples:

- $A=\mathbb{Z}$ with the standard grading and suitable h : Grothendieck's Hilbert scheme
- $A=\{0\}$: Hilbert scheme of $h(0)$ points in affine m-space
- Any A and $h=0,1$: the toric Hilbert scheme

Grading by Column Degree

Let $X=\left(x_{i j}\right)$ be a $d \times n$-matrix of unknowns. Fix the polynomial ring $K[X]$ with \mathbb{Z}^{n}-grading by column degree, i.e. $\operatorname{deg}\left(x_{i j}\right)=e_{j}$.

The Hilbert function of the polynomial ring $K[X]$ equals

$$
\mathbb{N}^{n} \rightarrow \mathbb{N},\left(u_{1}, \ldots, u_{n}\right) \mapsto \prod_{i=1}^{n}\binom{u_{i}+d-1}{d-1}
$$

Grading by Column Degree

Let $X=\left(x_{i j}\right)$ be a $d \times n$-matrix of unknowns. Fix the polynomial ring $K[X]$ with \mathbb{Z}^{n}-grading by column degree, i.e. $\operatorname{deg}\left(x_{i j}\right)=e_{j}$.

The Hilbert function of the polynomial ring $K[X]$ equals

$$
\mathbb{N}^{n} \rightarrow \mathbb{N},\left(u_{1}, \ldots, u_{n}\right) \mapsto \prod_{i=1}^{n}\binom{u_{i}+d-1}{d-1}
$$

The ideal of 2×2-minors $I_{2}(X)$ has the Hilbert function

$$
h: \mathbb{N}^{n} \rightarrow \mathbb{N},\left(u_{1}, \ldots, u_{n}\right) \mapsto\binom{u_{1}+u_{2}+\cdots+u_{n}+d-1}{d-1}
$$

This talk concerns the multigraded Hilbert scheme $H_{d, n}=\operatorname{Hilb}_{s}^{h}$.

Grading by Column Degree

Let $X=\left(x_{i j}\right)$ be a $d \times n$-matrix of unknowns. Fix the polynomial ring $K[X]$ with \mathbb{Z}^{n}-grading by column degree, i.e. $\operatorname{deg}\left(x_{i j}\right)=e_{j}$.

The Hilbert function of the polynomial ring $K[X]$ equals

$$
\mathbb{N}^{n} \rightarrow \mathbb{N},\left(u_{1}, \ldots, u_{n}\right) \mapsto \prod_{i=1}^{n}\binom{u_{i}+d-1}{d-1}
$$

The ideal of 2×2-minors $I_{2}(X)$ has the Hilbert function

$$
h: \mathbb{N}^{n} \rightarrow \mathbb{N},\left(u_{1}, \ldots, u_{n}\right) \mapsto\binom{u_{1}+u_{2}+\cdots+u_{n}+d-1}{d-1}
$$

This talk concerns the multigraded Hilbert scheme $H_{d, n}=\operatorname{Hilb}_{s}^{h}$.
Geometry: points on $H_{d, n}$ represent degenerations of the diagonal in a product of projective spaces $\left(\mathbb{P}^{d-1}\right)^{n}=\mathbb{P}^{d-1} \times \cdots \times \mathbb{P}^{d-1}$.

Conca's Conjecture

Using an idea suggested to us by Michael Brion, we proved
Theorem (conjectured by Aldo Conca)
All \mathbb{Z}^{n}-homogeneous ideals $I \subset K[X]$ with multigraded Hilbert function h are radical.

Conca's Conjecture

Using an idea suggested to us by Michael Brion, we proved
Theorem (conjectured by Aldo Conca)
All \mathbb{Z}^{n}-homogeneous ideals $I \subset K[X]$ with multigraded Hilbert function h are radical.

For any ideal in I, we can perform a generic change of coordinates in each column and take the initial ideal.

Key idea: There exists a unique monomial ideal $Z \in H_{d, n}$ which is Borel-fixed in a multigraded sense.

The Borel-fixed Ideal

For $u \in \mathbb{N}^{n}$, let Z_{u} be the ideal generated by all unknowns $x_{i j}$ with $1 \leq j \leq n$ and $i \leq u_{j}$. This is a Borel-fixed prime monomial ideal. The unique Borel-fixed ideal Z on $H_{d, n}$ is the radical ideal

$$
\begin{gathered}
Z:=\bigcap_{u \in U} Z_{u} \\
U=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}: u_{i} \leq d-1 \text { and } \sum_{i} u_{i}=(n-1)(d-1)\right\} .
\end{gathered}
$$

The Borel-fixed Ideal

For $u \in \mathbb{N}^{n}$, let Z_{u} be the ideal generated by all unknowns $x_{i j}$ with $1 \leq j \leq n$ and $i \leq u_{j}$. This is a Borel-fixed prime monomial ideal. The unique Borel-fixed ideal Z on $H_{d, n}$ is the radical ideal

$$
\begin{gathered}
Z:=\bigcap_{u \in U} Z_{u} . \\
U=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}: u_{i} \leq d-1 \text { and } \sum_{i} u_{i}=(n-1)(d-1)\right\} .
\end{gathered}
$$

Proposition

The simplicial complex with Stanley-Reisner ideal Z is shellable.
Corollary
Every ideal I in $H_{d, n}$ is Cohen-Macaulay.

Group Completions

The group $G^{n}=\operatorname{PGL}(d)^{n}$ acts on $H_{d, n}$ by transforming each column independently. The stabilizer of $I_{2}(X)$ is the diagonal subgroup $G \cong\{(A, A, \ldots, A)\}$ of G^{n}. Thus, the orbit of $I_{2}(X)$ is the homogeneous space G^{n} / G, and we write $\overline{G^{n} / G}$ for its closure.

Group Completions

The group $G^{n}=\operatorname{PGL}(d)^{n}$ acts on $H_{d, n}$ by transforming each column independently. The stabilizer of $I_{2}(X)$ is the diagonal subgroup $G \cong\{(A, A, \ldots, A)\}$ of G^{n}. Thus, the orbit of $I_{2}(X)$ is the homogeneous space G^{n} / G, and we write $\overline{G^{n} / G}$ for its closure.

Theorem
The equivariant compactification $\overline{G^{n} / G}$ is an irreducible component of the multigraded Hilbert scheme $H_{d, n}$. Its dimension is $\left(d^{2}-1\right)(n-1)$.

Group Completions

The group $G^{n}=\operatorname{PGL}(d)^{n}$ acts on $H_{d, n}$ by transforming each column independently. The stabilizer of $I_{2}(X)$ is the diagonal subgroup $G \cong\{(A, A, \ldots, A)\}$ of G^{n}. Thus, the orbit of $I_{2}(X)$ is the homogeneous space G^{n} / G, and we write $\overline{G^{n} / G}$ for its closure.

Theorem

The equivariant compactification $\overline{G^{n} / G}$ is an irreducible component of the multigraded Hilbert scheme $H_{d, n}$. Its dimension is $\left(d^{2}-1\right)(n-1)$.

In the case of $n=2, H_{d, 2}$ is smooth and equals $\overline{G^{2} / G}$ and coincides with the classical space of complete collineations. Our representation as a multigraded Hilbert scheme gives explicit polynomial equations.

Yet Another Space of Trees

Here we restrict to $d=2$. The points of $H_{2, n}$ are degenerations of the diagonal $\mathbb{P}^{1} \rightarrow\left(\mathbb{P}^{1}\right)^{n}$.
Theorem
The multigraded Hilbert scheme $H_{2, n}$ is irreducible, so it equals the compactification $\overline{G^{n} / G}$. In other words, every \mathbb{Z}^{n}-homogeneous ideal with Hilbert function h is a flat limit of $I_{2}(X)$.

However, $H_{2, n}$ is singular for $n \geq 4$.

Monomial Ideals in Space of Trees

Theorem
There are $2^{n}(n+1)^{n-2}$ monomial ideals in $H_{2, n}$, indexed by trees on $n+1$ unlabeled vertices with n labeled, directed edges.
Example: The Hilbert scheme $H_{2,3}$ has 32 monomial ideals, corresponding to the 8 orientations on the claw tree and to the 8 orientations on each of the 3 labeled bivalent trees.

Monomial Ideals in Space of Trees

Theorem

There are $2^{n}(n+1)^{n-2}$ monomial ideals in $H_{2, n}$, indexed by trees on $n+1$ unlabeled vertices with n labeled, directed edges.
Example: The Hilbert scheme $H_{2,3}$ has 32 monomial ideals, corresponding to the 8 orientations on the claw tree and to the 8 orientations on each of the 3 labeled bivalent trees.

We construct a graph of the monomial ideals. For any ideal I such that the set of initial ideals of I consists of exactly two monomial ideals, we draw an edge between those monomial ideals.

Theorem

For monomial ideals in $\mathrm{H}_{2, n}$, two monomial ideals are connected by an edge iff the monomial ideals differ by either of the operations:

1. Move any subset of the trees attached at a vertex to an adjacent vertex.
2. Swap two edges that meet at a bivalent vertex.

Three Projective Planes

The smallest reducible case is $d=n=3$, which concerns degenerations of the diagonal plane $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$.

Three Projective Planes

The smallest reducible case is $d=n=3$, which concerns degenerations of the diagonal plane $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$.

Theorem

The multigraded Hilbert scheme $H_{3,3}$ is the reduced union of seven irreducible components, each containing a dense PGL(3) ${ }^{3}$ orbit:

- The 16-dimensional main component $\overline{G^{3} / G}$ is singular.
- Three 14-dimensional smooth components are permuted under the S_{3}-action. A generic point is a reduced union of the blow-up of \mathbb{P}^{2} at a point, two copies of \mathbb{P}^{2}, and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- Three 13-dimensional smooth components are permuted under the S_{3}-action. A generic point is a reduced union of three copies of \mathbb{P}^{2} and \mathbb{P}^{2} blown up at three points.

Poset of Monomial Ideals

Figure: Partial ordering of the monomial ideals on $\mathrm{H}_{3,3}$

