# Tropical complexes 

# Dustin Cartwright 

Yale University

October 20, 2012

## Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

## curve $\leftrightarrow$ connected graph

## Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve $\leftrightarrow$ connected graph<br>divisor $\leftrightarrow \quad$ finite sum of points<br>rational function $\leftrightarrow$ piecewise linear function

## Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

| curve | $\leftrightarrow$ connected graph |
| ---: | :--- |
| divisor | $\leftrightarrow$ finite sum of points |
| rational function | $\leftrightarrow$ piecewise linear function |
| zero | $\leftrightarrow$ where the function is strictly convex |
| pole | $\leftrightarrow$ where the function is strictly concave |

## Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

| curve | $\leftrightarrow$ connected graph |
| ---: | :--- |
| divisor | $\leftrightarrow$ finite sum of points |
| rational function | $\leftrightarrow$ piecewise linear function |
| zero | $\leftrightarrow$ where the function is strictly convex |
| pole | $\leftrightarrow$ where the function is strictly concave |

## Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

| curve | $\leftrightarrow$ |
| ---: | :--- |
| connected graph |  |
| divisor | $\leftrightarrow$ |
| finite sum of points |  |
| rational function | $\leftrightarrow$ |
| pero | $\leftrightarrow$ |
| phecewise linear function |  |
| pole | $\leftrightarrow$ |
| where the function is strictly convex |  |

Goal: Extend this analogy to higher dimensions.

## Hypersurfaces in Fano toric varieties

Let $P$ be a (3-dimensional) reflexive smooth polytope and $X_{P}$ the corresponding Fano toric variety.

$$
X_{P}
$$

## Hypersurfaces in Fano toric varieties

Let $P$ be a (3-dimensional) reflexive smooth polytope and $X_{P}$ the corresponding Fano toric variety. Let $Y$ be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$
Y \subset X_{P} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}
$$

## Hypersurfaces in Fano toric varieties

Let $P$ be a (3-dimensional) reflexive smooth polytope and $X_{P}$ the corresponding Fano toric variety. Let $Y$ be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$
Y \subset X_{P} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}
$$

The generic fiber of $Y \rightarrow \mathbb{A}^{1}$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope $P^{0}$.

## Hypersurfaces in Fano toric varieties

Let $P$ be a (3-dimensional) reflexive smooth polytope and $X_{P}$ the corresponding Fano toric variety. Let $Y$ be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$
Y \subset X_{P} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}
$$

The generic fiber of $Y \rightarrow \mathbb{A}^{1}$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope $P^{0}$.
Two of these components intersect if they share an edge in $P^{\circ}$ and three components intersect if they share a triangle.

## Hypersurfaces in Fano toric varieties

Let $P$ be a (3-dimensional) reflexive smooth polytope and $X_{P}$ the corresponding Fano toric variety. Let $Y$ be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$
Y \subset X_{P} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}
$$

The generic fiber of $Y \rightarrow \mathbb{A}^{1}$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope $P^{0}$.
Two of these components intersect if they share an edge in $P^{\circ}$ and three components intersect if they share a triangle.
The boundary of $P^{\circ}$ (as a simplicial complex) is called the dual complex of the degeneration.

## Tropical complexes

An $n$-dimensional tropical complex is a $\Delta$-complex $\Gamma$ of pure dimension $n$, together with integers $a(v, F)$ for every $(n-1)$-dimensional face (facet) $F$ and vertex $v \in F$, such that $\Gamma$ satisfies the following two conditions: First, for each face $F$,

$$
\sum_{v \subset F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second,...

## Tropical complexes

An $n$-dimensional tropical complex is a $\Delta$-complex $\Gamma$ of pure dimension $n$, together with integers $a(v, F)$ for every $(n-1)$-dimensional face (facet) $F$ and vertex $v \in F$, such that $\Gamma$ satisfies the following two conditions:
First, for each face $F$,

$$
\sum_{v \in F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second,...

## Remark

A 1-dimensional tropical complex is just a graph because the extra data is forced to be $a(v, v)=-\operatorname{deg}(v)$.

## Tropical complexes

An $n$-dimensional tropical complex is a $\Delta$-complex $\Gamma$ of pure dimension $n$, together with integers $a(v, F)$ for every $(n-1)$-dimensional face (facet) $F$ and vertex $v \in F$, such that $\Gamma$ satisfies the following two conditions: First, for each face $F$,

$$
\sum_{v \in F} a(v, F)=-\#\{n \text {-dimensional faces containing } F\}
$$

Second, for any ( $n-2$ )-dimensional face $G$, we form the symmetric matrix $M$ whose rows and columns are indexed by facets containing $G$ with

$$
M_{F F^{\prime}}= \begin{cases}a(F \backslash G, F) & \text { if } F=F^{\prime} \\ \#\left\{\text { faces containing both } F \text { and } F^{\prime}\right\} & \text { if } F \neq F^{\prime}\end{cases}
$$

and we require all such $M$ to have exactly one positive eigenvalue.

## Local embeddings

Let $F$ be a $(n-1)$-dimensional simplex in a tropical complex $\Gamma$.
$N(F)$ : subcomplex of all simplices containing $F$
$N(F)^{\circ}$ : union of interiors of $F$ and of simplices containing $F$

## Local embeddings

Let $F$ be a $(n-1)$-dimensional simplex in a tropical complex $\Gamma$.
$N(F)$ : subcomplex of all simplices containing $F$
$N(F)^{\circ}$ : union of interiors of $F$ and of simplices containing $F$ $v_{1}, \ldots, v_{n}$ : vertices of $F$
$w_{1}, \ldots, w_{d}$ : vertices of $N(F)$ not in $F$

## Local embeddings

Let $F$ be a $(n-1)$-dimensional simplex in a tropical complex $\Gamma$.
$N(F)$ : subcomplex of all simplices containing $F$
$N(F)^{\circ}$ : union of interiors of $F$ and of simplices containing $F$ $v_{1}, \ldots, v_{n}$ : vertices of $F$
$w_{1}, \ldots, w_{d}$ : vertices of $N(F)$ not in $F$
$V_{F}$ : quotient vector space $\mathbb{R}^{n+d} /\left(a\left(v_{1}, F\right), \ldots, a\left(v_{n}, F\right), 1, \ldots, 1\right)$

## Local embeddings

Let $F$ be a $(n-1)$-dimensional simplex in a tropical complex $\Gamma$.
$N(F)$ : subcomplex of all simplices containing $F$
$N(F)^{\circ}$ : union of interiors of $F$ and of simplices containing $F$ $v_{1}, \ldots, v_{n}$ : vertices of $F$
$w_{1}, \ldots, w_{d}$ : vertices of $N(F)$ not in $F$
$V_{F}$ : quotient vector space $\mathbb{R}^{n+d} /\left(a\left(v_{1}, F\right), \ldots, a\left(v_{n}, F\right), 1, \ldots, 1\right)$
$\phi_{F}$ : linear map $N(F) \rightarrow V_{F}$ sending $v_{i}$ and $w_{j}$ to images of $i$ th and $(n+i)$ th unit vectors respectively.

## Local embeddings

Let $F$ be a $(n-1)$-dimensional simplex in a tropical complex $\Gamma$.
$N(F)$ : subcomplex of all simplices containing $F$
$N(F)^{\circ}$ : union of interiors of $F$ and of simplices containing $F$ $v_{1}, \ldots, v_{n}$ : vertices of $F$
$w_{1}, \ldots, w_{d}$ : vertices of $N(F)$ not in $F$
$V_{F}$ : quotient vector space $\mathbb{R}^{n+d} /\left(a\left(v_{1}, F\right), \ldots, a\left(v_{n}, F\right), 1, \ldots, 1\right)$
$\phi_{F}$ : linear map $N(F) \rightarrow V_{F}$ sending $v_{i}$ and $w_{j}$ to images of $i$ th and $(n+i)$ th unit vectors respectively.

A continuous $\mathbb{R}$-valued function on $\Gamma$ is linear if on each $N(F)^{\circ}$ it is the composition of $\phi_{F}$ followed by an affine linear function with integral slopes.

## Example: two triangles meeting along an edge

$n=d=2$.
$\Gamma$ is two triangles sharing a common edge $F$.


$$
a_{1}=a_{2}=-1 \quad a_{1}=-2, a_{2}=0
$$

$$
a_{1}=0, a_{2}=-2
$$

where $a_{i}$ is shorthand for $a\left(v_{i}, F\right)$.

## Divisors

## Definition

A piecewise linear function will be a continuous function $\phi: \Gamma \rightarrow \mathbb{R}$ such that on each face, $\phi$ is piecewise linear with integral slopes.

## Divisors

## Definition

A piecewise linear function will be a continuous function $\phi: \Gamma \rightarrow \mathbb{R}$ such that on each face, $\phi$ is piecewise linear with integral slopes.

Each piecewise linear function $\phi$ has an associated divisor, a formal sum of ( $n-1$ )-dimensional polyhedra, supported on the set where $\phi$ is not linear.

## Divisors

## Definition

A piecewise linear function will be a continuous function $\phi: \Gamma \rightarrow \mathbb{R}$ such that on each face, $\phi$ is piecewise linear with integral slopes.

Each piecewise linear function $\phi$ has an associated divisor, a formal sum of ( $n-1$ )-dimensional polyhedra, supported on the set where $\phi$ is not linear. Definition
A divisor is a formal sum of $(n-1)$-dimensional polyhedra which is locally the divisor of a piecewise linear function.

Definition
Two divisors are linearly equivalent if their difference is the divisor of a (global) piecewise linear function.

## Example: The 1-skeleton of a tetrahedron


$\Gamma$ is the boundary of a tetrahedron, with all $a(v, F)=-1$.


## Example: The 1-skeleton of a tetrahedron


$\Gamma$ is the boundary of a tetrahedron, with all $a(v, F)=-1$.


## Example: The 1-skeleton of a tetrahedron


$\Gamma$ is the boundary of a tetrahedron, with all $a(v, F)=-1$.


## Intersections on surfaces

Let $D$ and $D^{\prime}$ be two divisors on a 2-dimensional tropical complex. Locally, write $D$ as the divisor of a piecewise linear function $f$. Define the product of $D$ and $D^{\prime}$ as a formal sum of points of $D^{\prime}$ for which $p$ has multiplicity:

$$
\left.\sum_{E: \text { edge of } D^{\prime}, E \ni p} \text { (outgoing slope of } f \text { along } E\right)\left(\text { multiplicity of } E \text { in } D^{\prime}\right)
$$

## Intersections on surfaces

Let $D$ and $D^{\prime}$ be two divisors on a 2-dimensional tropical complex. Locally, write $D$ as the divisor of a piecewise linear function $f$. Define the product of $D$ and $D^{\prime}$ as a formal sum of points of $D^{\prime}$ for which $p$ has multiplicity:

$$
\sum \text { (outgoing slope of } f \text { along } E \text { )(multiplicity of } E \text { in } D^{\prime} \text { ) }
$$

$$
E: \text { edge of } D^{\prime}, E \ni p
$$

## Proposition

This itersection product is well-defined and symmetric. The degree of the resulting 0-cycle is invariant under linear equivalence of both $D$ and $D^{\prime}$.

## Hodge index theorem

```
Theorem
Let 「 be 2-dimensional tropical complex such that the link of every vertex is connected. If \(H\) is a divisor on \(\Gamma\) such that \(H^{2}>0\) and \(D\) a divisor such that \(H \cdot D=0\), then \(D^{2}<0\).
```


## Hodge index theorem

Theorem
Let $\Gamma$ be 2-dimensional tropical complex such that the link of every vertex is connected. If $H$ is a divisor on $\Gamma$ such that $H^{2}>0$ and $D$ a divisor such that $H \cdot D=0$, then $D^{2}<0$.

## Conjecture

On any 2-dimensional tropical complex where the link of every vertex is connected, there exists a divisor $H$ such that $H^{2}>0$.

