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Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve ↔ connected graph

divisor ↔ finite sum of points

rational function ↔ piecewise linear function

zero ↔ where the function is strictly convex

pole ↔ where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

Dustin Cartwright (Yale University) Tropical complexes October 20, 2012 2 / 10



Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve ↔ connected graph

divisor ↔ finite sum of points

rational function ↔ piecewise linear function

zero ↔ where the function is strictly convex

pole ↔ where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

Dustin Cartwright (Yale University) Tropical complexes October 20, 2012 2 / 10



Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve ↔ connected graph

divisor ↔ finite sum of points

rational function ↔ piecewise linear function

zero ↔ where the function is strictly convex

pole ↔ where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

Dustin Cartwright (Yale University) Tropical complexes October 20, 2012 2 / 10



Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve ↔ connected graph

divisor ↔ finite sum of points

rational function ↔ piecewise linear function

zero ↔ where the function is strictly convex

pole ↔ where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

Dustin Cartwright (Yale University) Tropical complexes October 20, 2012 2 / 10



Tropical curves: an overview

Analogies between algebraic curves and graphs (tropical curves):

curve ↔ connected graph

divisor ↔ finite sum of points

rational function ↔ piecewise linear function

zero ↔ where the function is strictly convex

pole ↔ where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

Dustin Cartwright (Yale University) Tropical complexes October 20, 2012 2 / 10



Hypersurfaces in Fano toric varieties

Let P be a (3-dimensional) reflexive smooth polytope and XP the
corresponding Fano toric variety.

Let Y be defined by a pencil in the
anticanonical linear series containing both smooth surface and the union of
the boundary divisors.

Y ⊂

XP

× A1 → A1

The generic fiber of Y → A1 is a K3 surface and one fiber is a reducible
divisor whose components correspond to the vertices of the dual
polytope Po .
Two of these components intersect if they share an edge in Po and three
components intersect if they share a triangle.
The boundary of Po (as a simplicial complex) is called the dual complex of
the degeneration.
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Tropical complexes

An n-dimensional tropical complex is a ∆-complex Γ of pure dimension n,
together with integers a(v ,F ) for every (n − 1)-dimensional face (facet) F
and vertex v ∈ F , such that Γ satisfies the following two conditions:
First, for each face F ,∑

v∈F
a(v ,F ) = −#{n-dimensional faces containing F}

Second,...

Remark

A 1-dimensional tropical complex is just a graph because the extra data is
forced to be a(v , v) = − deg(v).
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together with integers a(v ,F ) for every (n − 1)-dimensional face (facet) F
and vertex v ∈ F , such that Γ satisfies the following two conditions:
First, for each face F ,∑

v∈F
a(v ,F ) = −#{n-dimensional faces containing F}

Second, for any (n− 2)-dimensional face G , we form the symmetric matrix
M whose rows and columns are indexed by facets containing G with

MFF ′ =

{
a(F \ G ,F ) if F = F ′

#{faces containing both F and F ′} if F 6= F ′

and we require all such M to have exactly one positive eigenvalue.
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Local embeddings

Let F be a (n − 1)-dimensional simplex in a tropical complex Γ.

N(F ) : subcomplex of all simplices containing F

N(F )o : union of interiors of F and of simplices containing F

v1, . . . , vn : vertices of F

w1, . . . ,wd : vertices of N(F ) not in F

VF : quotient vector space Rn+d/
(
a(v1,F ), . . . , a(vn,F ), 1, . . . , 1

)
φF : linear map N(F )→ VF sending vi and wj to images of ith

and (n + i)th unit vectors respectively.

A continuous R-valued function on Γ is linear if on each N(F )o it is the
composition of φF followed by an affine linear function with integral slopes.
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Example: two triangles meeting along an edge

n = d = 2.
Γ is two triangles sharing a common edge F .

v2

v1

v2

v1

v2

v1

a1 = a2 = −1 a1 = −2, a2 = 0 a1 = 0, a2 = −2
where ai is shorthand for a(vi ,F ).
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Divisors

Definition

A piecewise linear function will be a continuous function φ : Γ→ R such
that on each face, φ is piecewise linear with integral slopes.

Each piecewise linear function φ has an associated divisor, a formal sum of
(n − 1)-dimensional polyhedra, supported on the set where φ is not linear.

Definition

A divisor is a formal sum of (n − 1)-dimensional polyhedra which is locally
the divisor of a piecewise linear function.

Definition

Two divisors are linearly equivalent if their difference is the divisor of a
(global) piecewise linear function.
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Example: The 1-skeleton of a tetrahedron

Γ is the boundary of a tetrahedron, with all a(v ,F ) = −1.

∼ ∼
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Intersections on surfaces

Let D and D ′ be two divisors on a 2-dimensional tropical complex. Locally,
write D as the divisor of a piecewise linear function f . Define the product
of D and D ′ as a formal sum of points of D ′ for which p has multiplicity:∑

E : edge of D′,E3p
(outgoing slope of f along E )(multiplicity of E in D ′)

Proposition

This itersection product is well-defined and symmetric. The degree of the
resulting 0-cycle is invariant under linear equivalence of both D and D ′.
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Hodge index theorem

Theorem

Let Γ be 2-dimensional tropical complex such that the link of every vertex
is connected. If H is a divisor on Γ such that H2 > 0 and D a divisor such
that H · D = 0, then D2 < 0.

Conjecture

On any 2-dimensional tropical complex where the link of every vertex is
connected, there exists a divisor H such that H2 > 0.
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