Dustin Cartwright

Yale University

October 20, 2012

Dustin Cartwright (Yale University)

Tropical complexes

October 20, 2012 1 / 10

3

э.

A⊒ ▶ ∢ ∃

 $\mathsf{curve} \hspace{0.1in} \leftrightarrow \hspace{0.1in} \mathsf{connected graph}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

 $\begin{array}{rcl} \mathsf{curve} & \leftrightarrow & \mathsf{connected \ graph} \\ & \mathsf{divisor} & \leftrightarrow & \mathsf{finite \ sum \ of \ points} \\ \texttt{rational \ function} & \leftrightarrow & \mathsf{piecewise \ linear \ function} \end{array}$

3

- 4 週 ト - 4 三 ト - 4 三 ト

curve	\leftrightarrow	connected graph
divisor	\leftrightarrow	finite sum of points
rational function	\leftrightarrow	piecewise linear function
zero	\leftrightarrow	where the function is strictly convex
pole	\leftrightarrow	where the function is strictly concave

- 31

イロト イポト イヨト イヨト

curve	\leftrightarrow	connected graph
divisor	\leftrightarrow	finite sum of points
rational function	\leftrightarrow	piecewise linear function
zero	\leftrightarrow	where the function is strictly convex
pole	\leftrightarrow	where the function is strictly concave

- 31

イロト イポト イヨト イヨト

curve	\leftrightarrow	connected graph
divisor	\leftrightarrow	finite sum of points
rational function	\leftrightarrow	piecewise linear function
zero	\leftrightarrow	where the function is strictly convex
pole	\leftrightarrow	where the function is strictly concave

Goal: Extend this analogy to higher dimensions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 31

Let P be a (3-dimensional) reflexive smooth polytope and X_P the corresponding Fano toric variety.

 X_P

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let P be a (3-dimensional) reflexive smooth polytope and X_P the corresponding Fano toric variety. Let Y be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

 $Y \subset X_P \times \mathbb{A}^1 \to \mathbb{A}^1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let P be a (3-dimensional) reflexive smooth polytope and X_P the corresponding Fano toric variety. Let Y be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$Y \subset X_P imes \mathbb{A}^1 o \mathbb{A}^1$$

The generic fiber of $Y \to \mathbb{A}^1$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope P^o .

イロト 人間ト イヨト イヨト

Let P be a (3-dimensional) reflexive smooth polytope and X_P the corresponding Fano toric variety. Let Y be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$Y \subset X_P imes \mathbb{A}^1 o \mathbb{A}^1$$

The generic fiber of $Y \to \mathbb{A}^1$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope P^o .

Two of these components intersect if they share an edge in P^o and three components intersect if they share a triangle.

イロト イポト イヨト イヨト 二日

Let P be a (3-dimensional) reflexive smooth polytope and X_P the corresponding Fano toric variety. Let Y be defined by a pencil in the anticanonical linear series containing both smooth surface and the union of the boundary divisors.

$$Y \subset X_P imes \mathbb{A}^1 o \mathbb{A}^1$$

The generic fiber of $Y \to \mathbb{A}^1$ is a K3 surface and one fiber is a reducible divisor whose components correspond to the vertices of the dual polytope P^o .

Two of these components intersect if they share an edge in P^o and three components intersect if they share a triangle.

The boundary of P^o (as a simplicial complex) is called the dual complex of the degeneration.

An *n*-dimensional tropical complex is a Δ -complex Γ of pure dimension *n*, together with integers a(v, F) for every (n - 1)-dimensional face (facet) *F* and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each face *F*,

$$\sum_{v \in F} a(v, F) = -\#\{n \text{-dimensional faces containing } F\}$$

Second,...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An *n*-dimensional tropical complex is a Δ -complex Γ of pure dimension *n*, together with integers a(v, F) for every (n - 1)-dimensional face (facet) *F* and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each face *F*,

$$\sum_{v \in F} a(v, F) = -\#\{n \text{-dimensional faces containing } F\}$$

Second,...

Remark

A 1-dimensional tropical complex is just a graph because the extra data is forced to be $a(v, v) = -\deg(v)$.

イロト 人間ト イヨト イヨト

An *n*-dimensional tropical complex is a Δ -complex Γ of pure dimension *n*, together with integers a(v, F) for every (n - 1)-dimensional face (facet) *F* and vertex $v \in F$, such that Γ satisfies the following two conditions: First, for each face *F*,

$$\sum_{v \in F} a(v, F) = -\#\{n \text{-dimensional faces containing } F\}$$

Second, for any (n-2)-dimensional face G, we form the symmetric matrix M whose rows and columns are indexed by facets containing G with

$$M_{FF'} = \begin{cases} a(F \setminus G, F) & \text{if } F = F' \\ \#\{\text{faces containing both } F \text{ and } F'\} & \text{if } F \neq F' \end{cases}$$

and we require all such M to have exactly one positive eigenvalue.

Let F be a (n-1)-dimensional simplex in a tropical complex Γ .

N(F): subcomplex of all simplices containing F $N(F)^{\circ}$: union of interiors of F and of simplices containing F

Let F be a (n-1)-dimensional simplex in a tropical complex Γ .

N(F): subcomplex of all simplices containing F $N(F)^{\circ}$: union of interiors of F and of simplices containing F v_1, \ldots, v_n : vertices of F

 w_1, \ldots, w_d : vertices of N(F) not in F

Let F be a (n-1)-dimensional simplex in a tropical complex Γ .

N(F): subcomplex of all simplices containing F $N(F)^{\circ}$: union of interiors of F and of simplices containing F v_1, \ldots, v_n : vertices of F w_1, \ldots, w_d : vertices of N(F) not in F

 V_F : quotient vector space $\mathbb{R}^{n+d}/(a(v_1, F), \dots, a(v_n, F), 1, \dots, 1)$

Let F be a (n-1)-dimensional simplex in a tropical complex Γ .

N(F): subcomplex of all simplices containing F $N(F)^{\circ}$: union of interiors of F and of simplices containing F v_1, \ldots, v_n : vertices of F w_1, \ldots, w_d : vertices of N(F) not in F V_F : quotient vector space $\mathbb{R}^{n+d}/(a(v_1, F), \ldots, a(v_n, F), 1, \ldots, 1)$ ϕ_F : linear map $N(F) \rightarrow V_F$ sending v_i and w_j to images of *i*th and (n + i)th unit vectors respectively.

Let F be a (n-1)-dimensional simplex in a tropical complex Γ .

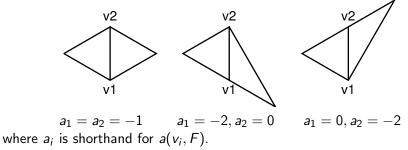
$$\begin{split} & N(F) \text{: subcomplex of all simplices containing } F \\ & N(F)^{\circ} \text{: union of interiors of } F \text{ and of simplices containing } F \\ & v_1, \ldots, v_n \text{: vertices of } F \\ & w_1, \ldots, w_d \text{: vertices of } N(F) \text{ not in } F \\ & V_F \text{: quotient vector space } \mathbb{R}^{n+d} / \big(a(v_1, F), \ldots, a(v_n, F), 1, \ldots, 1 \big) \\ & \phi_F \text{: linear map } N(F) \to V_F \text{ sending } v_i \text{ and } w_j \text{ to images of } i\text{ th} \\ & \text{ and } (n+i)\text{th unit vectors respectively.} \end{split}$$

A continuous \mathbb{R} -valued function on Γ is linear if on each $N(F)^{\circ}$ it is the composition of ϕ_F followed by an affine linear function with integral slopes.

Example: two triangles meeting along an edge

n = d = 2.

 Γ is two triangles sharing a common edge F.



Divisors

Definition

A piecewise linear function will be a continuous function $\phi: \Gamma \to \mathbb{R}$ such that on each face, ϕ is piecewise linear with integral slopes.

3

(日) (同) (三) (三)

Divisors

Definition

A piecewise linear function will be a continuous function $\phi \colon \Gamma \to \mathbb{R}$ such that on each face, ϕ is piecewise linear with integral slopes.

Each piecewise linear function ϕ has an associated divisor, a formal sum of (n-1)-dimensional polyhedra, supported on the set where ϕ is not linear.

Divisors

Definition

A piecewise linear function will be a continuous function $\phi \colon \Gamma \to \mathbb{R}$ such that on each face, ϕ is piecewise linear with integral slopes.

Each piecewise linear function ϕ has an associated divisor, a formal sum of (n-1)-dimensional polyhedra, supported on the set where ϕ is not linear.

Definition

A divisor is a formal sum of (n - 1)-dimensional polyhedra which is locally the divisor of a piecewise linear function.

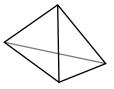
Definition

Two divisors are linearly equivalent if their difference is the divisor of a (global) piecewise linear function.

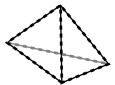
- 32

イロト イポト イヨト イヨト

Example: The 1-skeleton of a tetrahedron



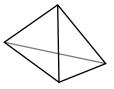
 Γ is the boundary of a tetrahedron, with all a(v, F) = -1.



3

(日) (同) (三) (三)

Example: The 1-skeleton of a tetrahedron

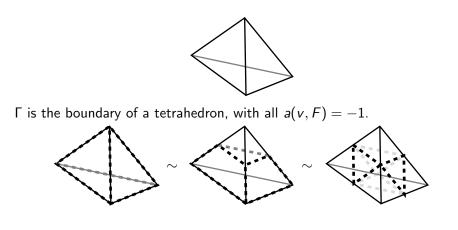


 Γ is the boundary of a tetrahedron, with all a(v, F) = -1.

3

- 4 @ > 4 @ > 4 @ >

Example: The 1-skeleton of a tetrahedron



・ロト ・四ト ・ヨト ・ヨト

Let D and D' be two divisors on a 2-dimensional tropical complex. Locally, write D as the divisor of a piecewise linear function f. Define the product of D and D' as a formal sum of points of D' for which p has multiplicity:

 $\sum_{E: \text{ edge of } D', E \ni p} (\text{outgoing slope of } f \text{ along } E) (\text{multiplicity of } E \text{ in } D')$

イロト イポト イヨト イヨト

Let D and D' be two divisors on a 2-dimensional tropical complex. Locally, write D as the divisor of a piecewise linear function f. Define the product of D and D' as a formal sum of points of D' for which p has multiplicity:

 $\sum_{E: \text{ edge of } D', E \ni p} (\text{outgoing slope of } f \text{ along } E)(\text{multiplicity of } E \text{ in } D')$

Proposition

This itersection product is well-defined and symmetric. The degree of the resulting 0-cycle is invariant under linear equivalence of both D and D'.

イロト 人間ト イヨト イヨト

Theorem

Let Γ be 2-dimensional tropical complex such that the link of every vertex is connected. If H is a divisor on Γ such that $H^2 > 0$ and D a divisor such that $H \cdot D = 0$, then $D^2 < 0$.

Theorem

Let Γ be 2-dimensional tropical complex such that the link of every vertex is connected. If H is a divisor on Γ such that $H^2 > 0$ and D a divisor such that $H \cdot D = 0$, then $D^2 < 0$.

Conjecture

On any 2-dimensional tropical complex where the link of every vertex is connected, there exists a divisor H such that $H^2 > 0$.