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Two-dimensional density currents in a confined basin
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We present new experimental results on the mechanisms through which steady two-dimensional
density currents lead to the formation of a stratification in a closed basin. A motivation for
this work is to test the underlying assumptions in a diffusive ‘‘filling box’’ model that describes
the oceanic thermohaline circulation (Hughes, G.O. and Griffiths, R.W., A simple convective
model of the global overturning circulation, including effects of entrainment into sinking
regions,OceanModeling, 2005, submitted.). In particular, they hypothesized that a non-uniform
upwelling velocity is due to weak along-slope entrainment in density currents associated with a
large horizontal entrainment ratio of Eeq � 0.1. We experimentally measure the relationship
between the along-slope entrainment ratio, E, of a density current to the horizontal entrainment
ratio, Eeq, of an equivalent vertical plume. The along-slope entrainment ratios show the same
quantitative decrease with slope as observed by Ellison and Turner (Ellison, T.H. and
Turner, J.S., Turbulent entrainment in stratified flows, J. Fluid Mech., 1959, 6, 423–448.),
whereas the horizontal entrainment ratio Eeq appears to asymptote to a value of Eeq ¼ 0:08
at low slopes. Using the measured values of Eeq we show that two-dimensional density currents
drive circulations that are in good agreement with the two-dimensional filling box model of
Baines and Turner (Baines, W.D. and Turner, J.S., Turbulent buoyant convection from a
source in a confined region, J. Fluid. Mech., 1969, 37, 51–80.). We find that the vertical veloci-
ties of density fronts collapse onto their theoretical prediction that U ¼ �2�2=3B1=3E2=3

eq ðH=RÞ�,
where U is the velocity, H the depth, B the buoyancy flux, R the basin width, Eeq the horizontal
entrainment ratio and � ¼ z=H the dimensionless depth. The density profiles are well fitted with
� ¼ 2�1=3B2=3E�2=3

eq H�1½lnð�Þ þ ��, where � is the dimensionless time. Finally, we provide a
simple example of a diffusive filling box model, where we show how the density stratification
of the deep Caribbean waters (below 1850m depth) can be described by a balance between
a steady two-dimensional entraining density current and vertical diffusion in a triangular basin.
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1. Introduction

It has long been recognized that the deepest waters of the world’s oceans are formed at
high latitudes where surface buoyancy forcing leads to the production of dense cold
salty waters, which cascade down the continental slopes as density currents to form
deep bottom waters. A similar process can occur in many lakes, whereby differential
cooling of the shallow regions drives the production of cold dense fresh waters
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that sink and flow down the slopes as entraining density currents. The outflow of these
dense waters can then stratify the deeper parts of the basins (Monismith et al. 1990,
Wells and Sherman 2001, Fer et al. 2001, 2002 a,b).

The formation of stratification by a plume in a confined environment was first
described in detail in the ‘‘filling box’’ model of Baines and Turner (1969) (hereafter
referred to as BT69). Their laboratory plume was made by continuously pumping
dense saline water through a small nozzle into the upper surface of a rectangular
tank containing water, as shown in figure 1a. This dense water falls under gravity
and starts to turbulently entrain the surrounding fluid. The entrainment of the lighter
surrounding fluid causes the density within the plume to decrease at the same time as
the volume flux increases. Upon reaching the base of the tank the waters spread
laterally and a pool of dense water forms. Within the deepening layer of dense water
a stratification develops because the density at the base of the plume continues to
increase with time due to entrainment of existing waters in the dense pool. It is observed
that the entrainment velocity into a free falling negatively buoyant plume is a linear
function of the local velocity, and hence the maximum entrainment velocity occurs
near the base of the plume. After the pool of dense water fills the depth of the tank,
a steady balance between entrainment and upwelling develops, thereby creating the
steady density gradient, sketched in figure 1b. The only unknown parameter in the
analytic solution of the density gradient (Eq. 9 of BT69) is the entrainment ratio,
which is defined by Taylor (1948) as

E ¼ we=W , ð1Þ

where we is the entrainment velocity normal to the current, which has a mean vertical
velocity W. This can be measured independently and has a value E ¼ 0:1� 0:01 for
free plumes (Morton et al. 1956, Turner 1986). Using this empirically determined
value, the predicted filling box stratification agrees well with measurements from
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Figure 1. (a) An unstable buoyancy forcing from an isolated source results in an entraining plume or density
current. The recirculation of these waters produces a slow upwelling of dense water in the basin with a velocity
that decreases as the source of the density current is reached. (b) The re-entrainment of dense waters into the
density currents results in the formation of a characteristic density profile that remains constant in shape,
while the overall density in the box increases.
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a point source plume. Predictions were also made for a line source by BT69 and will be
verified in this article.

With a time-varying buoyancy flux driving the turbulent plume, Killworth and
Turner (1982) found that the plume only reaches the base of the tank during times
of peak buoyancy forcing, and otherwise spreads at intermediate depths when reaching
its level of neutral buoyancy. The resulting stratification is almost identical to that
created by a constant plume with the maximum value of the buoyancy forcing.
When multiple plumes of different strengths are used, the overall stratification was
the same as that resulting from the strongest plume, with the outflow from the
weaker plumes intruding at their level of neutral buoyancy (Wong and Griffiths
1999). When adding weak rotation to the filling box problem, Pierce and Rhines
(1996) also found the same density profiles as in the non-rotating case. Due to the
robust nature of the filling box theory, it has been used to explain the formation of
stratification by diverse arrangements of buoyancy sources in a variety of geophysical
and engineering contexts (e.g. Turner 1986, Linden 1999).

The same filling box process can occur in a basin where strong convection over
shallow shelf regions leads to periodic formation of a dense line plume that stratifies
the deep basin, as shown in figures 2 and 3. Because a density current only entrains
on one surface, rather than two for a two-dimensional plume, it can be considered to
be one-half of the plume shown in figure 1. Ellison and Turner (1959), (hereafter
referred to as ET59) conducted seminal work on how the along-slope entrainment
rate E in density currents varied as a function of slope and Richardson number, and
found that E decreases with slope. The formation of stratification in the deep basin
from convection on a shelf slope was investigated experimentally by Turner (1998);
using a steep 45� slope he observed the development of circulation patterns very similar
to the filling box model. Detailed field observations have been made in small inland
lakes (Fer et al. 2001, 2002a,b, Wells and Sherman 2001) and show that during sus-
tained periods of winter cooling, significant stratification can be formed in a manner
that is qualitatively similar to the filling box model. For deep-water formation the forc-
ing need not be localized in space above the shelf because a spatially uniform cooling
will result in more rapid cooling of the shallow regions of the lake. If these shallow
regions occupy a significant fraction of the lake, then the resulting density currents
will stratify the remaining deep regions and form a slowly upwelling thermocline.

151 cm

First front 

Diffuser

17 cm

27cm

θ  

21 cm

Figure 2. An illustration of the experimental setup. Slope angles of 16, 27, 45, 60, 75 and 898 were used.
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This non-uniform upwelling can balance the downwards mixed-layer growth, thereby
creating a steady mixed-layer depth as the lake continues to cool (Wells et al. 1999,
Wells and Sherman 2001).

In an oceanographic setting, the vertical upwelling of dense water can be balanced by
effective downwards small scale mixing of lighter surface waters, so that a constant
density profile emerges. This can be represented by a diffusive ‘‘filling box’’, first
introduced by Manins (1973, 1979) to describe the density stratification of the deep
Red Sea. A similar but more complex model was developed by Hughes et al. (2005),
and Hughes and Griffiths (2005) (referred to as HG05 hereafter) whereby the
world’s oceans are represented by a single basin with the deep water being formed at
high latitudes. A critical assumption in their theory is that the entrainment by the den-
sity current will result in vertically non-uniform upwelling within the basin, similar to
the filling box dynamics. The entrainment velocity normal to the bottom slope in
such oceanographic density currents is generally very small, but they showed that it
is actually the rate of increase of volume flux with depth rather than the along-slope
rate of increase that is the important quantity. The two are related by
Eeq ¼ E=sinð�Þ where � is the angle measured relative to the horizontal at which the
plume descends a slope. By extrapolation of the ET59 data they predicted that
Eeq¼ 0.1 at small slopes. This implies that upwelling velocities in the world’s oceans
are vertically non-uniform, as in the filling box model. A balance between uniform
upwelling and downwards vertical diffusion was shown by Munk (1966) to result in
a realistic shape of the density distribution, if the vertical eddy diffusivity, �, has a
value of 10�4 m2 s�1. Field observations have found that a more realistic value of � is
an order of magnitude lower (Gregg 1989, Ledwell et al. 1993, Toole et al. 1994),
leading many to assume that the Munk (1966) model was incorrect. However, HG05
showed that the density distribution produced by a non-uniform upwelling balanced
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Figure 3. The entrainment ratio is the ratio of entrainment velocity to along-slope velocity, E ¼ we=W
(ET59), and is related to the rate at which the plume increases horizontal width as a function of depth
Eeq ¼ db=dz (BT69) by using the relation derived by HG05 that Eeq ¼ E=sin ð�Þ. This can be simply visua-
lized in the figure above. On the left the entrainment rate E is related to the angle �, by E ¼ tanð�Þ. On the
right we have an equivalent plume that increases the same horizontal width L1 in a depth H but has �eq > �,
implying a larger equivalent horizontal entrainment.
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by downwards diffusion, with observed meridional heat flux as a boundary condition,
is similar to realistic basin-averaged ocean stratifications, and has a realistic eddy
diffusivity that is an order of magnitude lower than that of Munk (1966).

This article is organized in the following way. We start in the following section
by revisiting the work of BT69, who made detailed predictions of the form of the
stratification created by a vertical two-dimensional plume. These observations have
not been previously tested in the laboratory and in section 3 we detail a series of
experiments that demonstrate how this theory also describes a filling box driven by a
turbulent density current on a slope, in addition to the vertical two-dimensional
plume originally considered. We also experimentally verify the crucial connection
between the horizontal entrainment ratio of the density current and the entrainment
normal to the density current. In section 4, we discuss the predictions of HG05 in
light of our experimental observations, and show how the observed density profile of
the deep Caribbean basin can be described by a similar balance between non-uniform
upwelling and vertical diffusion.

2. Theory

In order to make this presentation reasonably self contained, and to develop the scaling
of particular relevance to our experiments, we revisit the theory of BT69. The conserva-
tion equations for volume, momentum and density deficiency in a two-dimensional
line plume, when integrated over the cross section of width b are

d

dz
ðbwÞ ¼ 2Ew, ð2Þ

d

dz
ðbw2Þ ¼ b�, ð3Þ

d

dz
ðbw�Þ ¼ bw

@�o

@z
, ð4Þ

where E is the entrainment ratio, w is the vertical plume velocity, the gravity anomaly of
the plume is � ¼ gð�� �1Þ=�1 and the gravity anomaly of the environment is
�o ¼ gð�o � �1Þ=�1, in which g is the gravitational acceleration, � and �o are the
densities inside and outside the plume and �1 is a reference density.

For the present experiment, density changes in the environment at any level occur
only because of vertical motion, so that

d�o

dt
¼ �UðzÞ

d�o

dz
: ð5Þ

In section 4.1, we will discuss the influence of vertical mixing or diffusion. The upward
volume flux in the environment must equal the downward flux in the plume, which
gives

�RU ¼ bw, ð6Þ
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where U is the upwelling velocity of the environment and R is the basin width.
An important assumption in the BT69 model is that the basin width is much larger
than the horizontal width of the density current, so that R � b. This can be easily satis-
fied in the laboratory, and in most oceanographic applications where the horizontal
cross-sectional area of the density current is much less than that of the basin. The impli-
cations of having R � b have been considered by Barnett (1991), who found very
different circulations driven by momentum.

Generalization of the results of BT69 from a vertical two-dimensional plume to the
case of a two-dimensional density current on a slope, requires that the horizontal
entrainment ratio Eeq be determined. In the ET59 model, the entrainment ratio is
defined in terms of the rate of increase in plume width as a function of the distance
along slope, whereas BT69 define the entrainment ratio as the rate of increase in
horizontal plume width as a function of depth, which we denote as Eeq. For a density
current flowing vertically the two definitions are the same, but for a density current on a
slope they can be quite different. HG05 showed that by making the simple co-ordinate
transformation from along-slope position to vertical depth, the two definitions are
simply related by

Eeq ¼ E=sin�, ð7Þ

where � is the slope angle. For a vertical plume the entrainment velocity is already
horizontal so the two definitions are the same, but when the slope decreases, Eeq

diverges from E. This is illustrated in figure 3. The measured entrainment values of
ET59 are consistent with E ! 0 as the slope goes to zero, and HG05 assumed a
linear interpolation between the measured value at laboratory slopes (E ¼ 10�2 at
� ¼ 58) and the theoretical limit that E ! 0 as � ! 0. They concluded that at low
slope angles Eeq would asymptote to 0.1. Tests of this assumption will be described
herein.

The equations (2)–(5) are non-dimensionalized by

�o ¼ 2�1=3B2=3
o E�2=3

eq H�1�oð�, �Þ, ð8Þ

� ¼ 21=6B2=3E�2=3
eq H�1�ð�Þ, ð9Þ

w ¼ 21=3B1=3E�1=3
eq wð�Þ, ð10Þ

b ¼ EeqHbð�Þ, ð11Þ

U ¼ 2�2=3B1=3E2=3
eq ðH=RÞUð�Þ, ð12Þ

t ¼ 22=3B�1=3E�2=3
eq R� and ð13Þ

� ¼ z=H: ð14Þ

The above non-dimensionalization will hold for a filling box produced by a density
current, except that the density current only entrains on one side, the basin scale R
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is half of that used in figure 1. The resulting dimensionless versions of
differential equations (2)–(4) and (6), are

dU

d�
¼ �w,

dðwUÞ

d�
¼ ��b, ð15, 16Þ

dðU�Þ

d�
¼ U

d�o

d�
, U

d�o

d�
¼ 1: ð17, 18Þ

Solutions can be found for all these variables, but for the present discussion the
important results are in the form of the upwelling velocity U and the environmental
density �o. The mean velocity of a two-dimensional steady turbulent density current
has been observed to be constant in ET59; hence wð�Þ ¼ 1. From (15) such a constant
velocity implies that the width grows linearly with depth and b ¼ �. A dimensionless
version of the equation of continuity (6) is that U ¼ �bw, so this leads to an upwelling
velocity that is also a linear function of depth, U ¼ ��. Such an upwelling velocity
implies that the position � of density fronts will vary with time as

� ¼ expð��Þ: ð19Þ

A linear upwelling velocity combined with (18) implies that the environmental density
has a profile like

�o ¼ ln ð�Þ þ �, ð20Þ

where the constant is evaluated using the fact that the total buoyancy in the tank
increases at a rate determined by buoyancy flux normalized by tank volume. At the
base of the tank the density �o has a maximum, and the density gradients d�o=d�
are a minimum. Near the surface, where � ! 0, there is a minimum in �o and a
maximum in d�o=d�; similar to the sharp pycnocline in the ocean.

The origin of the maximum in the buoyancy gradient d�o=d� as � ! 0 is due to the
intimate connection between the density gradients and the local upwelling velocity as
described by equation (5). The rate of change of buoyancy is just the buoyancy flux
per unit length divided by the cross-sectional area A; d�o=dt ¼ B=A. Hence in (5)
there is an inverse relationship between the upwelling velocity and density gradient,
with the maximum density gradients occurring at the surface due to the weak entrain-
ment velocities of the narrow plume. In our laboratory experiments molecular diffusion
is not important for the typical length and time scales, however as we will discuss in
section 4, for oceanographic applications a much larger ‘‘eddy diffusivity’’ is important
in the vertical density balance.

Thus far we have only considered the case where the basin has a constant width
with depth. However, it is easy to include a new dimensionless variable Rð�Þ in the
continuity equation (6). A good approximation to the geometry of many realistic
ocean or lake basins is that of a triangular wedge (rather than a constant width rectan-
gular basin) so that Rð�Þ ¼ ð1� �Þ. If w¼ 1 the variation in width creates only a change
to the upwelling velocities at depth, with U ¼ ��=ð1� �Þ. Due to the relation between
density gradients and vertical velocity expressed by (5), these faster upwelling velocities

Density currents in a confined basin 205



at depth then imply that there will be weaker density gradients here. Because the density
gradients are already weak at this depth, in practice this is only a small correction.

3. Experiment

The experiments on two-dimensional density currents were performed in the tank
illustrated in figure 2. The tank has a length of 150 cm, a width of 12 cm and a depth
of 25 cm. A horizontal shelf of length 20 cm and height 17 cm was created, onto
which dense saline water was pumped through a diffusing manifold that sat 2 cm
above the shelf. This dense saline water created a horizontal exchange flow, with the
dense saline water flowing down the slope. During the descent of this dense water
down the slope, entrainment of ambient fluid decreases its density and hence increases
its volume. The resulting movements of the dyed density layers were recorded with
digital photographs, as shown in figure 4. Seven experiments were performed at
slopes � ranging between 16 and 90�. Fluid of density � ¼ 1:05 g cm�3 was pumped
at flow rates of Q ¼ 1:5 cm3s�1, resulting in buoyancy fluxes per unit width of B ¼

gQð�� �oÞ=�oW ¼ 5.8 cm3 s�3. The density currents have Reynolds number of the
order 300–500. Two experiments (not reported here) were conducted with 45� slopes
in a larger tank at Re ¼ 1000 and essentially the same results were found for entrain-
ment rates and velocity profiles, indicating a lack of Reynolds number dependence for
these flows.

3.1. Experimental results

We present two sets of experimental results – firstly, velocity and density measurements
that confirm the theoretical scalings of BT69, and secondly, measurements of the
equivalent entrainment ratio Eeq, which is predicted by HG05 to asymptote to a
constant value at low slope angles.

In figure 5a we show a photograph of a green density current flowing down a 60�

slope into a tank 13min after the initiation of the experiment. Layers of red and
yellow dye from earlier density currents can be seen. The vertical blue lines in this
image mark the position and extent from which thin vertical slices are taken every
10 s. These slices are stacked and show the complete time history of the positions of
the various waters from the dyed density currents in figure 5b. On top of this time his-
tory we have overlain the theoretical prediction that � ¼ expð��Þ. There is good agree-
ment with the theory, except, as expected, at the very bottom and top. At the base, the
finite thickness of the outflowing density current gives the appearance of very large
vertical velocities. At the surface of the tank, the velocities do not vanish due to the
small amount of saline fluid that is continually being pumped through the manifold
on the shelf, whereas the theory of BT69 assumed an idealized source of buoyancy
that had no volume flux.

Figures 5b and c clearly show the inverse relationship between velocity and
density gradient expressed by equation (5), with maximum velocities occurring where
the density gradients are the weakest. In figure 5b the movement of density fronts
follows � ¼ expð��Þ so that U ¼ ��, while in figure 5c we find that the experimental
measurements of the density profile have �o ¼ lnð�Þ þ � so that d�o=d� ¼ 1=�; hence
U d�o=d� ¼ �1 as required by (5).
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In figure 6 we plot the vertical position of density fronts versus time for a series of
experiments with varying slope, but constant buoyancy forcing. Once allowance is
made for the variation of the entrainment ratio with slope, then all the measured
data collapse onto the predicted curve. The entrainment ratio, Eeq, is the only free
parameter, and is deduced by fitting the theoretical curve to the data. These measured
values of Eeq and inferred values of E [using (7)] are plotted in figure 7, along with the
original measurements of entrainment in density currents from ET59. The error bars in
our data are mainly due to the unavoidable presence of internal waves in the filling box
process (Wong et al. 2001). There is very good agreement between the present inferred
values of E and the ET59 results in figure 7b, where the entrainment vanishes as slope

(a)

(b)

(c)

Figure 4. Photographs of a density current on a 458 slope with B ¼ 5:8 cm3 s�3, showing the vertical
movement of dyed density layers at times (a) t¼ 0, (b) t¼ 320 s, (c) t¼ 400 s.
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Figure 5. (a) Experimental observations of a density current at time �¼ 1.53. The two blue vertical lines
mark the sections that are stacked in the depth versus time plot of (b). The vertical movement of the density
fronts can be clearly seen, and agrees well with the theoretical prediction that � ¼ lnð1=�Þ. The vertical red line
marks the temporal position of the photograph in (a). The dimensionless density profile is plotted against the
theory that �o ¼ lnð�Þ þ � in (c). Samples were taken from the same experiment as (b) at � ¼ 4:8, and the
density was determined by measuring the conductivity of the saline samples. In this experiment the buoyancy
flux was B ¼ 6:125 cm3s�3 and we assume Eeq ¼ 0:08 in fitting the theoretical curves.
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angle � ! 0. However, the entrainment ratios that are appropriate for use in a filling
box model appear to asymptote to a constant value of approximately E ¼ 0:08 as
� ! 0, similar to the prediction of HG05. Neither our present experiments nor
ET59 give a sense of exactly what the functional form of E or Eeq is for � < 10�,
and the functional form of Eeq deduced from (7) is very sensitive to how E approaches
zero. It must decrease more rapidly than linearly if Eeq is to maintain realistic values.
As we will describe in the next section, this limit is important because most
oceanographic density currents exist on slopes with � < 10�.

The fact that the position of the first front is well described by � ¼ expð��Þ for all the
experiments for 16–90� slopes implies that the entrainment is occurring over the full
length of all the density currents. If the gravity currents were laminar then the upwelling
velocity would be constant below the level of the sill, that is, like � / ��. This is clearly
not seen in the data of either figure 5(b) or 6. A laminar density current would also result
in a uniform density in the basin, rather than the observed profile in figure 5(c). This
upwelling implied by the entraining density current had been implicitly assumed
in the successful interpretation of field observations of Wells and Sherman (2001),
where bottom slopes had � < 10�. The fact that weakly entraining density currents
can still force a strongly non-uniform upwelling is also the essential difference between
Munk’s (1966) theory of oceanic stratification and that of HG05, discussed in the next
section.

Another important oceanographic implication of the constant equivalent entrain-
ment rate of density currents shown in figure 7a is that the initial depth at which
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Figure 6. The experimental observations of the vertical position of density fronts versus time are plotted
against the theoretical prediction, for a series of six experiments similar to those shown in figures 4 and 5
where 168 < � < 908 and one experiment with a free plume. Once allowance is made for the dependence of
entrainment ratio Eeq with slope, there is good agreement with the theoretical prediction. In these experiments
B ¼ 5:8 cm3 s�3.
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Figure 7. In fitting the theoretical profile (19) to the laboratory data of figure 6 we determine the equivalent
entrainment ratio Eeq of the density currents on slopes, which is plotted in (a). The free plume and density
current on the 878 slope both have a value of Eeq � 0.1, as expected, but at lower slopes Eeq appears to
asymptote to a value of Eeq ¼ 0:08 � 0:005. This confirms the prediction of HG05 that density currents on
low angle slopes should entrain fluid horizontally at rates comparable to an equivalent vertical plume. In (b)
we plot the estimated along-slope entrainment rate E (plotted as circles) using equation (7), and we find good
quantitative agreement with the previous experiments of ET59, (þ).
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a density current intrudes into a linear stratification should be independent of the slope
and depend only upon the background stratification and the buoyancy flux of the
density current. This has been found in initial experiments for density currents in
stratified environments on 45 and 90� slopes (Wells and Wettlaufer 2005), where the
depth of intrusion is observed to be the same for both the cases, when the same
buoyancy flux and stratification was used. The scaling observed of Z / B1=3=N is the
same as in the previous experiments of Wright and Wallace (1979) and Bush and
Woods (1999) for free two-dimensional plumes. The along-slope entrainment rate for
a 458 slope is less than that for a 908 slope, and hence one might have naively expected
that intrusion depth of density currents on 458 slopes would be systematically deeper.
Currently we are testing if such scaling holds for shallower slopes.

4. Oceanographic application

Most observations of oceanographic entrainment (see, for example, Baringer and Price
1999) choose to describe the entrainment ratio as a function of local Froude number
rather than the slope angle. The experimental data of ET59 can be well described by
E � 0:08Fr, where the Froude number is defined as

Fr ¼
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0h cos�
p , ð21Þ

which reduces to the more common definition of Fr ¼ W=
ffiffiffiffiffiffi
g0h

p
as � ! 0.

In figure 8 we plot a range of observations of entraining density currents from the
laboratory (ET59, Alavian 1986, Cenedese et al. 2004) and the field (Baringer and
Price 1999, Dallimore et al. 2001, Princevac et al. 2004). It has been suggested (Jim
Price, personal communication, 2004) that the data at low Froude number (Fr < 1)
can be fitted by E / Fr8 and the data at high Froude number (Fr > 1) by E / Fr.
The values of entrainment ratio E for Fr < 1 are very small but non-zero. Most of
the previous interpretations of the ET59 data (i.e., Turner 1986; or Price and
Baringer 1994) had assumed that there was a cut-off Froude number around Fr ¼ 1
below which no entrainment occurred in density currents, and this assumption has
since been used in a large number of modeling studies. Using equation (7) HG05
extrapolated the data of ET59 to small slope angles and predicted that Eeq ¼ 0:1,
similar to our laboratory observations. Thus, rather than there being a cut-off at low
slopes or low Froude numbers, density currents are still able to modify the environment
via a filling box process. Most of the observations in oceanic settings shown in figure 8
have found Fr � 1 and E ¼ 10�4 to 3� 10�3 for � ¼ 0:1 to 18, much lower than the
smallest value of entrainment in our experiments or ET59, where E ¼ 0:015 when
� ¼ 98. Using equation (7) shows that for a low slope of tan� ¼ 1=25 with
E ¼ 10�4, values of Eeq ¼ 0:1 are possible, but due to the large scatter in the data of
field experiments, Eeq values between 0.05 and 0.3 are also possible. The important
point, however, is that it is very reasonable to expect that a density current flowing
down a low angle slope in a confined basin will be able to modify the stratification
via a filling box process, and that the density current will be able to force a vertically
non-uniform upwelling. An example of such a filling box process can be found in the
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field observations of dense water formation in winter in the shallow water of the
Chaffey Reservoir (Wells and Sherman 2001). The presence of persistent stratification
over two winters (rather than the typical winter overturning of the water column) was
attributed to a non-uniform upwelling driven by density currents from the shallow
regions, balancing downwards penetrative convection from surface cooling, resulting
in a fixed mixed-layer depth as the whole water column continued to cool.

4.1. Diffusive–advective balance

If a steady state is to be achieved by the continued supply of dense waters at the floor
of an oceanic basin, then there must be a balance between the advection and diffusion
in the vertical. This was first discussed by Munk (1966) in terms of high-latitude waters
providing the deep bottom waters of the world’s oceans. These cold dense waters were
assumed to rise slowly with a uniform velocity U, which was balanced by mixing of
lighter surface waters downwards to achieve a steady density profile. Munk (1966)
then showed that one can solve the diffusion–advection equation

U
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Figure 8. Entrainment ratio E ¼ we=W as a function of Froude number. Data from laboratory experiments
of ET59, Alavian (1986) and Cenedese et al. (2004) are shown, as well as field observations in the
Mediterranean (Baringer and Price 1999), Lake Ogawarra (Dallimore et al. 2001) and recent field observa-
tions of a katabatic flow at high Froude number and Reynolds number of 107 (Princevac et al. 2005).
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with an exponential solution of the form

� ¼ �z¼0 exp ð�zU=�Þ: ð23Þ

This was originally proposed to explain the shape of the stratification in the world’s
oceans. Estimated rates of high-latitude bottom water production, Q can be converted
into an estimate of U by assuming uniform vertical upwelling everywhere, producing
U � 10�7 m s�1 for the global mean, with � � 10�4 m2 s�1. This estimate of � has since
been found to be an order of magnitude too high compared with the field observations
(Gregg 1989, Ledwell et al. 1993, Toole et al. 1994).

A solution to this problem was proposed by HG05, wherein entrainment (albeit
small) into sinking currents is assumed and hence a non-uniform upwelling is predicted.
If the dense waters descend to the abyssal ocean as entraining density currents, then the
upwelling vertical velocity U will be a function of depth, with a maximum upwelling
velocity at the outflow level of the density current. For the simplest case of a two-
dimensional plume in our laboratory experiment the vertical velocity has the form
UðzÞ ¼ Uo ðz=HÞ, and a balance between vertical advection and diffusion results in
an error-function solution for the density profile

� ¼ �z¼0 erf �z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uo=H�

p� �
ð24Þ

As shown in figure 9 both equations (23) and (24) have a similarly shaped solution
for the density. The important difference between the two expressions is the H in the
exponent of (24). For deep basins where H is of the order of kilometers, the implication
is that the value of the eddy diffusivity � can be smaller for the same magnitude of
vertical upwelling velocity U. HG05 considered a similar but more realistic treatment
of an oceanic density current formed at high latitudes that includes bottom drag and
the Coriolis forces, and concluded that this simple difference in the form of the upwel-
ling velocities may explain the difference between the large value of � ¼ 10�4 m2 s�1

required by Munk (1966), and the lower observed values of � ¼ 10�5 m2 s�1 (Gregg
1989, Ledwell et al. 1993, Toole et al. 1994) that are typically observed in the world’s
oceans. By applying the observed meridional heat transport as a boundary condition,
they also predict the top-to-bottom density difference and overturning flux for the
global ocean, and hence also the scale Uo.

4.2. Stratification of the deep Caribbean basin

As a practical example of equation (24), let us consider the stratification of the
deep Caribbean basin, which has been observed by MacCready et al. (1999) to be
periodically ventilated below a depth of 1850m by a dense cold density current that
episodically flows through the Jungfern–Grappler sill complex. The observed current
had an initial width of about 5–10 km and a depth of up to 200m. Upon entering
the Jungfern–Grapeler sill complex, the density current turns to the right under the
influence of the Coriolis force and then descends slopes between 1=4 and 1=100.
At 5, 13 and 22 km downstream the plume was observed by MacCready et al. (1999)
to have a width of between 10 and 15 km and was spread along the slope over a
range of 1000m depth. At about 50 km downstream, the plume started to detrain at
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a level between 300 and 800m beneath the sill. We will implicitly assume that the den-
sity current is steady in the following, even though MacCready et al. (1999) noted that
the density current was episodic with �10 events occurring per year. We argue that the
steady-state assumption is reasonable, in light of the time-periodic filling box experi-
ments of Killworth and Turner (1982). They found that even though the plume
would only reach the base of the tank in a fraction of the time, the resulting
stratification was virtually the same as that for a steady plume. Furthermore, because
the stratification is inversely proportional to the average vertical velocity, it is also
reasonable to assume that the average upwelling velocity is the same as that of a
steady density current or plume. We will also assume that the increase in cross-sectional
area with the depth of the density current is approximately linear, so that we can use a
two-dimensional representation of the density current and hence apply (24) to describe
the steady stratification in the basin.

The depth distribution shown in figure 10 closely resembles a simple wedge, so
that the basin length can be considered to vary as Rð�Þ ¼ Roð1� �Þ. By considering
the continuity of fluid, equation (6), within such a basin, a descending entraining
density current with a constant velocity would create a vertical velocity U of the form

Uð�Þ ¼ Uo
�

1� �
, ð25Þ

where Uo ¼ EwoH=Ro.
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Solving the advection–diffusion equation (22) using (25) results in an analytic
solution for the gradient of the reduced gravity,

@�o

@�
¼

@�o

@�

����
�¼0

exp �
UoH

�
½� � logð1� �Þ�

� �
, ð26Þ
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which can be integrated numerically to obtain the density profile. We can determine the
appropriate eddy diffusivity � by considering the flux of density across the level at
which the plumes feed into the basins (depth z ¼ 1850m). The only input of density
is the flux of Q ¼ 1� 105 m3 s�1 of water with an average density anomaly
0.022 kgm�3. For a steady-state density profile, this flux must balance a downwards
diffusive flux over the entire area A of the basin so that

Q�o ¼ �A
@�o

@z
, ð27Þ

thereby providing an expression for �.
From the data of MacCready et al. (1999) the buoyancy gradient is @�o=@z ¼

4:5� 10�7 s�2 and the area of the basin is 1:2� 1012 m2 at z¼ 1850m. This implies
that at this level the diapycnal eddy diffusivity is � ¼ 4:1� 10�5 m2 s�1. This value is
comparable with measured diffusivities in most mid-ocean sites away from topography
(Gregg 1989, Ledwell et al. 1993, Toole et al. 1994). The maximum basin depth
is 5369m, so the effective depth of the basin below 1850m depth is H¼ 3519m.
We will assume that the vertical velocity U(�) decreases to zero as � ! 0 and has a
magnitude of Uo � Q=A ¼ 10�7 m s�1 and hence the group UoH=� has a value between
6 and 8. In figure 11 we find that a slightly lower value of UoH=� ¼ 3:1 fits the observed
data well; the shape of the curve is entirely determined by the vertical variation of the
upwelling velocity U(�). A more accurate estimate of the value of Uo will require a
detailed understanding of how the entrainment coefficient varies with the slope and
Coriolis parameter for a time-dependent density current, which we are presently exam-
ining in our laboratory. Similar values of diffusivity of � ¼ 1–6� 10�5 m2 s�1 were
inferred by MacCready et al. (1999), for a steady balance between downwards diffusion
and upwelling driven by a composite plume model of the 13 observed overflow events.
Using a similar balance between non-uniform upwelling and downwards diffusion of
heat, the vertical stratification of the deep Red Sea was also explained in a similar
way by Manins (1973), using values for the diffusivity of � ¼ 1:4� 10�5 m2 s�1.

5. Conclusions

In this article, we have experimentally confirmed the theoretical predictions of the
vertical velocities and density profiles given by the two-dimensional filling box model
of Baines and Turner (1969) for two-dimentional density currents on seven different
slopes between 16 and 908. In all cases the density profiles and vertical velocities in
the interior of the tank show that the density currents are actively entraining and
forcing a non-uniform upwelling. Using these results we have measured the horizontal
entrainment ratio Eeq for density currents on a slope, and using equation (7) we have
inferred the entrainment as a function of along-slope distance E. As the slope vanishes,
the former asymptotes to Eeq ! 0:08� 0:005, while the latter has E ! 0. There is good
quantitative agreement between the measurements of E with the previous measure-
ments of Ellison and Turner (1959) as the flows are of comparable Reynolds numbers.
The observation that Eeq asymptotes to 0.8, lends strong support to the idea of Hughes
and Griffiths (2005) that for most oceanographic density currents on small slopes,
where entrainment per unit along-slope distance is small, entrainment per unit depth

216 M. G. Wells and J. S. Wettlaufer



of fall will have significant effects and thus a confined basin can have filling box
dynamics such as a non-uniform upwelling rate.

A specific oceanographic example where a non-uniform upwelling may be important
is the Caribbean basin, in which deep waters are observed to be periodically renewed by
dense overflows (MacCready et al. 1999). We show that the stratification in the deep
Caribbean basin can be described by a balance between non-uniform upwelling and
vertical diffusion (similar to Hughes and Griffiths 2005), and find good agreement
between the theory and observations for reasonable choices of vertical upwelling
velocities and eddy diffusivities.
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