Brine fluxes from growing sea ice

A. J. Wells,1,2 J. S. Wettlaufer,1,2,3 and S. A. Orszag2,4

Received 24 November 2010; revised 6 January 2011; accepted 14 January 2011; published 26 February 2011.

[1] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical, electromagnetic, biological and transport properties, and hence upon the buoyancy forcing and ecology in the polar oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine channels: liquid conduits extending through the ice. We describe a theoretical model for the drainage process using mushy layer theory which demonstrates that the brine channel spacing is governed by a selection mechanism that maximizes the rate of removal of stored potential energy, and hence the brine flux from the system. The fluid transport through the sea ice and hence the scaling laws for brine fluxes and brine channel spacings are predicted. Importantly, the resulting brine flux scaling is consistent with experimental data for growth from a fixed temperature surface, allowing all parameters in the scaling law to be determined. This provides an experimentally tested first principles derivation of a parameterization for brine fluxes from growing sea ice. Citation: Wells, A. J., J. S. Wettlaufer, and S. A. Orszag (2011), Brine fluxes from growing sea ice, Geophys. Res. Lett., 38, L04501, doi:10.1029/2010GL046288.

1. Introduction

[2] The spatio-temporal distribution of the liquid phase within sea ice, a porous array of ice crystals interspersed with liquid brine, underlies all of its physical and biological properties (see Weeks [2010] and Thomas and Dieckmann [2010] for reviews). It is evident that a first principles understanding of the processes associated with the fate of brine is required to provide physically based approximations for geophysical-scale modeling. As the ice cover evolves, salt is lost to the ocean primarily by gravity drainage in winter, and flushing by surface meltwater in summer [Untersteiner, 1968]. The desalination process modifies the porosity of sea ice, the transport of passive scalars, such as heat, gases and nutrients through it and hence has a controlling influence on the biota within, and in proximity to, the ice cover [Thomas and Dieckmann, 2010]. Whereas theoretical estimates of the salinity structure of perennial sea ice are in good agreement with observations [Untersteiner, 1968], this is not the case for first year ice [Notz et al., 2005]. The brine flux emanating from sea ice controls the surface buoyancy forcing of the polar oceans, with first year sea ice growth extending over approximately 8×10^6 km2 in the Arctic, and 1.5×10^7 km2 in the Antarctic [Comiso, 2003]. Hence, a fundamental understanding of this basic process is a key component of polar climate dynamics and ecology. We address the principal aspects of the brine flux problem in first year ice here.

[3] Field measurements reviewed by Weeks [2010] show that the bulk salinity of sea ice evolves over time and space, from the upper ocean salinity of order 35 ppt at the base of a newly formed layer to a bulk value of approximately 3 ppt in multiyear ice. First year sea ice is typically characterized by a “C-shaped” profile. In the early stages of growth, a region of high permeability, often called the “skeletal layer”, is observed in the lowermost few centimeters of the ice from which convective gravity drainage removes dense brine [e.g., Eide and Martin, 1975]. However, once the sea ice thickness exceeds $5\text{–}10$ cm the convective downflow is dominated by brine channels – near-vertical conduits devoid of ice through which plumes of dense brine drain into the underlying ocean. Post mortems reveal mean brine channel spacings are comparable to the depth of the convecting layer at the base of the ice [Lake and Lewis, 1970; Eide and Martin, 1975; Wakatsuchi and Saito, 1985; Notz and Worster, 2009]. Laboratory experiments reveal the same features. As is to be expected, brine fluxes vary depending on the thermal boundary conditions and growth rate [Foster, 1969; Wakatsuchi and Ono, 1983; Cox and Weeks, 1988; Wettlaufer et al., 1997]. Early stages of thermohaline convection were visualized long ago [Foster, 1969] and more recently experiments have closed the mass budget while examining the stages of the flow regimes associated with the spatio-temporal variation of the ice porosity to test the basic conservation laws of this dynamic two-phase system [Wettlaufer et al., 1997].

[4] Theoretical studies of gravity drainage rely either on an empirical parameterization using an effective segregation coefficient [Cox and Weeks, 1988], or prescribe a diffusive mixing process using an enhanced artificial diffusivity that is some function of the local Rayleigh number [Vancoppenolle et al., 2009]. Some two dimensional models of brine transport offer evidence of localized brine drainage features, but lack the sub-millimeter scale resolution required to accurately describe liquid flow in the brine channels. Predictive capability requires a more general theoretical framework which recognizes that sea ice is a chemically reacting porous medium, most generally referred to as a mushy layer [Feltham et al., 2006]. Experimental work on convection in mushy layers undergoing transient growth reveals an increase in the mean spacing between brine channels as the mushy region thickens over time [Tait and Jaupart, 1992; Solomon and Hartley, 1998]. Theoretical
and experimental work on mushy layers has identified conditions for the onset of convection in a variety of settings predicting the formation and evolution of brine channels [e.g., Worster, 1992; Wettlaufer et al., 1997; Schulze and Worster, 1998; Chung and Worster, 2002; Katz and Worster, 2008; Neufeld and Wettlaufer, 2008]. Recently, we have demonstrated that brine channel spacing is governed by a variational principal in which the rate of removal of stored potential energy is maximized [Wells et al., 2010]. Here, we apply this analysis to develop a physically based description of brine fluxes from sea ice that collapses a wide range of experimental data.

2. A Model of Ice Growth

[5] We treat the solidification process by considering salt water of salinity C_0 translated vertically upward at a mean solidification rate V between two heat baths at temperatures T_0 and T_f, as illustrated in Figure 1, where the eutectic point has temperature T_E and salinity C_E. The liquid partially solidifies to form a mushy region with a porous array of ice crystals bathed in dense salt enriched brine that undergoes buoyancy driven convection. One can think of this system as analogous to a convecting region of fixed depth within the sea ice layer and evolving over time to follow the mush liquid interface as seen experimentally [Notz and Worster, 2009]. We model the observations of well developed convection from brine channels in a periodic array with spacing L. Time dependent mushy layer theory [Schulze and Worster, 2005] is used to solve for the Darcy velocity u, temperature T, volume fraction of solid ϕ and salinity C within the mushy region of thickness $h(x,t)$, and we also solve for the brine channel width $a(z,t)$. The theory conserves heat and salt, invoking a condition of local thermodynamic equilibrium (with the freezing temperature depending linearly on salinity) to determine the local solid fraction, and evolving the mush-liquid free boundaries to satisfy the condition of marginal equilibrium so that the solid grows sufficiently to just eliminate any constitutional supercooling in the liquid. Fluid flow in the porous layer is described by Darcy’s law driven by pressure gradients and buoyancy forces, and asymptotic approximations are applied to describe the flow within brine channels and the underlying liquid, as well as to provide boundary conditions for the mushy region. The conservation equations and boundary conditions were integrated using second-order finite differences, with heat and salinity equations treated using semi-implicit Crank-Nicolson time-stepping. The resulting equations for the fluid stream function and dimensionless temperature were solved using multigrid iteration [Briggs et al., 2000; Adams, 1989] and $h(x,t)$ and $a(z,t)$ were updated using relaxation (see Wells et al. [2010], for more details).

[6] The system is characterized by the dimensionless parameters

$$R_m = \frac{\rho g \beta \Delta C l_0}{\mu \kappa}, \quad \mathcal{C} = \frac{C_0 - C_S}{\Delta C}, \quad Da = \frac{\Pi_0 V^2}{\kappa}, \quad \theta_s = \frac{T_s - T_f(C_0)}{\Delta C}, \quad S = \frac{L}{c_p \Delta C}, \quad \lambda = \frac{V L}{2 \kappa},$$

where $\Delta C = C_E - C_0$, $l_T = \kappa / V$, κ is the thermal diffusivity, $T_f(C_0)$ is the liquidus temperature of the underlying liquid,
number for a wide range of C. Brine channels close up and the brine flux vanishes for Rayleigh numbers less than a critical value $R_m < R_c$, whereas for $R_m > R_c$, convection controlled by brine channels yields a flux that increases approximately linearly with Rayleigh number for $R_c \ll R_m \lesssim 60$. This is consistent with the dimensional brine flux scaling

$$F = \frac{\gamma \rho g \beta (C_E - C_0)^2 \Pi_0}{\mu} \left(\frac{R_m - R_c}{R_m} \right), \quad \text{for} \quad R_m > R_c$$

$$F = 0, \quad \text{for} \quad R_m < R_c$$

(2)

that was previously determined for $C = 15$ [Wells et al., 2010], where γ is a constant to be determined in the analysis that follows. Figure 3b demonstrates that, for each C, as the Rayleigh number increases the brine channel spacing L becomes proportional to the depth of the mushy layer h_c.

3. Experimental Validation: Transient Growth

[9] The flux law (2) was derived for convection during steady directional solidification, but growth of sea ice is a transient process forced by the surface flux balance that determines the surface temperature. Therefore, we test our flux law using experimental measurements during transient growth. Wettlaufer et al. [1997] solidified sodium chloride solution and natural sea water in a closed system containing a growth cell of depth H with a cooled upper boundary of temperature T_B (and hence liquid salinity $C_B = -T_B/\Gamma$ at local thermodynamic equilibrium). The far field liquid salinity $C(t)$ evolved over time as a result of rejection of brine from the growing ice layer of thickness $h(t)$. The flux law (2) can be used in conjunction with an integral salt budget to estimate $C(t)$ theoretically for comparison to the laboratory data.

[10] The initial salinity is $C(0) = C_0$ and it was observed that the liquid region remained well mixed with uniform salinity. Hence, solute conservation in the liquid region yields a flux

$$\frac{d}{dt}[(C_I - C_0)(H - h)] = F.$$

(3)

For transient growth from a fixed-temperature boundary the relevant global mushy layer Rayleigh number is proportional to the mushy layer depth h so that we can identify

$$R_m \sim R_T = \frac{\rho g \beta (C_B - C) \Pi_0 h}{\mu \Delta h}$$

(4)

in (2) and hence

$$F \sim \frac{\gamma \rho g \beta (C_B - C_0)^2 \Pi_0}{\mu} \left(1 - \frac{h_c}{h} \right), \quad \text{for} \quad h > h_c,$$

(5)

where $h = h_c$ is defined by $R_T = R_c$.

[11] When the layer thickness is far beyond critical but much smaller than the experimental cell depth ($h_c \ll h \ll H$) then (3) and (5) can be approximated by

$$H \frac{d}{dt}(C_I - C_0) = \frac{\gamma \rho g \beta (C_B - C_0)^2 \Pi_0}{\mu}.$$

(6)
Moreover, when \(C_I - C_0 \ll C_B - C_0 \) the solution is approximated as

\[
C_I - C_0 \sim \gamma \frac{\rho g \beta \Pi_0}{\mu H} (C_B - C_0)^2 (t - t_c),
\]

(7)

which predicts that the salinity increases linearly in time. Figure 4a plots measured values of \(C_I(t) \) for a range of initial salinities \(C_0 \) and boundary temperatures \(T_B \). Each data set is described by linear best fit lines, with differing slopes due to the dependence of the prefactor \(\gamma \) on \(C \). Making the hypothesis that \(\gamma \sim \alpha C \) for \(C \ll 1 \) with \(\alpha \) constant, (7) yields

\[
\frac{C_I - C_0}{C_B - C_0} \sim \alpha \frac{\rho g \beta \Pi_0}{\mu H} (C_0 - C_3)(t - t_c),
\]

(8)

Figure 4b shows that all of the previous data collapses to a single line given by equation (8) with \(\alpha = 0.023 \). Moreover, a power law fit of \(C_I - C_0 \propto (t - t_c)^\beta \) yields \(n = 1.07 \pm 0.05 \). This provides confidence that equations (2) or (5) can be applied to describe both transient growth of sea ice (with \(C \ll 1 \)), and steady state growth. Note that equation (5) predicts that the brine flux does not depend directly on the growth rate \(V \) for solidification from a fixed temperature surface. Finally, we note that although the factor \(\alpha \) could in principle depend on the parameters \(\theta_{se} \), \(S \) and \(Da \), the experimental collapse in Figure 4b shows such dependencies are insignificant for freezing conditions in the experiment.

4. Conclusions

[12] The combination of theoretical modeling and test against experiment provide a physically based framework for understanding brine fluxes from growing sea ice. In this manner the brine flux laws emerge from a variational principle underlying the coupling between phase change and fluid flow in the theory of mushy layers. This principle sets the spacing of brine channels to maximize the flux emerging from a growing layer. The resulting scaling law equation (2) successfully reproduces the evolution of liquid salinity in transient growth experiments with a prefactor \(\gamma = \alpha C \), providing further support for the hypothesized variational principle. Importantly, the agreement with both steady state and transient growth implies that equation (2) or (5) and experiments provide a general test bed for parameterization of brine fluxes. Moreover, because all values are physically determined our approach removes the need to tune unknown parameters and hence the scaling (2) can easily be applied to estimate brine fluxes in more complex simulations of ice-ocean interaction. Indeed, this motivates present work to determine whether the asymptotic limit \(\gamma \sim \alpha C \) with \(C \ll 1 \) can also be recovered via theoretical models of mushy layer growth.

[13] We have calculated the temperature, solid fraction and velocity profiles using the basic underlying conservation laws of the system (Figure 2) and in so doing (a) predict regions of low solid fraction consistent with several basic structural features of observed sea ice, including the “skeletal layer” adjacent to the ice-water interface and the high permeability region close to the brine channel walls where feeder channels for primary brine channels are seen [Lake and Lewis, 1970] and (b) detail the nature of the convective exchange of fluid between the ocean and sea ice and hence the resulting influence on its structural properties. Our approach shows that brine drainage occurs via convective cells of order-one aspect ratio for a wide range of \(C \) values, consistent with the region of gravity drainage, substantially larger than the skeletal layer, observed adjacent to the ice water interface by Notz and Worster [2009]. The resulting exchange is likely to control the overall transfer of gases and other tracers of relevance to biogeochemical processes through the sea ice cover. Therefore, the combination of the brine flux scaling equation (2) and structural details described...
via mushy layer theory provide the basic theory for a thermodynamic model of sea ice that predicts rather than prescribes brine transport dynamics.

Acknowledgments. We thank the U.S. National Science Foundation grant OPP0440841 and Yale University under the Bateman endowment for support of this research, and along with Eric Rignot thank two anonymous reviewers.

References

S. A. Orszag, Department of Mathematics, Yale University, New Haven, CT 06520–3283, USA.

A. J. Wells and J. S. Wettlaufer, Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109, USA. (andrew.j.wells@yale.edu)