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Abstract

A nonnegative 1-periodic multifractal measure on R is obtained as infinite
random product of harmonics of a 1-periodic function W (¢). Such infinite
products are statistically self-affine and generalize certain Riesz products with
random phases. This convergence is due to their martingale structure. The
criterion on W for non-degeneracy is provided. It differs completely from
those for other known random measures constructed as martingale limits of
multiplicative processes. In particular, it is very sensitive to small changes in
W(t).

Interpreting these infinite products in the framework of thermodynamic
formalism for random transformations, log W is a potential function when
W > 0. The multifractal analysis of the limit measure is performed for a class
of potential functions having a dense countable set of jump points.

Résumé.

On construit sur R une mesure aléatoire positive 1-périodique comme limite d’une suite
de mesures aléatoires dont les densités sont des produits d’harmoniques d’une fonction
1-périodique W. Les mesures “produits infinis” ainsi obtenues sont statistiquement auto-
affines. Elles généralisent certains produits de Riesz avec phases. Leur existence est due
a ce que la suite des densités soit une martingale. On obtient la CNS sur W pour que
la limite soit non dégénérée. Cette condition est tres différente de celle obtenue pour les
autres mesures connues comme limites de processus multiplicatifs de nature martingale.
En particulier, elle est trés sensible & de petites perturbations de W.

Ces produits infinis étant interprétés & I’aide du formalisme thermodynamique pour des
transformations aléatoires, log W est un potentiel lorsque W > 0. L’analyse multifractale
de la mesure limite est obtenue pour une classe de potentiels présentant un ensemble dense
de points de saut.
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1 Introduction.

This paper investigates random statistically self-affine multifractal measures obtained as
limits of martingales. Those martingales are products of b-harmonics of a periodic func-
tion W (t), each term of the product being given a uniformly distributed random phase,
these phases being independent: let W be a nonnegative 1-periodic measurable function
satisfying
W(t)dt = 1.
[0,1]

Let (¢n)n>0 be a sequence of independent random phases distributed uniformly in [0, 1].
Let b > 2 be an integer. For every n > 1, denote by u, the random measure whose density
with respect to the Lebesgue measure £ on R is

n—1
Wy = TT w0+ ).
k=0

We study the limit of such densities p,,. They were proposed in [7] as a way to generate
stationary multifractal measures that are natural, and simple to define and to simulate
numerically. The original Riesz products ([22], [25] Ch. V 7), and the Riesz products with
random phases studied in [10, 11, 12] are special examples of sequences y,, which do not
vanish with positive probability when n — o0, i.e. are non-degenerate. They are unstable
in the sense that it will be shown that the non-degeneracy of the limit is destroyed by
small changes in W. This is an unexpected new phenomenon, and the goal of [7] is not
fulfilled. Nevertheless, the normalized sequence (f,/pn([0,1]))n>1 converges weakly on
compact subsets of R under suitable conditions. The sequel aims at characterizing the
non-degeneracy of the limit measure as well as performing its multifractal analysis under
weak assumptions on the regularity of W.

The limit measure. For every real ¢, the sequence (‘%‘(t)) is a 1-mean nonnegative
n>1

martingale with respect to the filtration (o(¢o, ..., $n—1))n>1. Therefore, the existence of
the random multiplicative measure y we are interested in follows from the theory in [14]
(throughout the text, weak convergence of measures on a locally compact Hausdorff set
K means weak* convergence in the dual of C(K), the space of real continuous functions
on K): with probability one, the sequence (un)n>0 restricted to the compact interval [0, 1]
converges weakly to a measure ;9 and the endpoints 0 and 1 are not atoms of (%),

Consequently, by the 1-periodicity of W, there exists a unique measure y on R such
that u(O(. + k) is the restriction of u to [k, k + 1] for every k € Z.
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In the sequel, 1 will denote x(®). Let us detail the content of the paper.

Condition of non-degeneracy. For the martingale limit y, the first question is whether
or not y is non-degenerate, meaning that y # 0 with positive probability; the theory in [14]
does not provide a general criterion. A surprising fact is established in Theorem 1: p is
non-degenerate if and only if the martingale ([0, 1]) equals 1 almost surely. In particular
1 has to be a probability measure, to be characterized via the Fourier coefficients of W.

The measure p is generically degenerate. The condition of non-degeneracy forces
certain products of Fourier coefficients of W' to vanish. Therefore degeneracy holds on an
open and dense set of functions W. For example, p is degenerate if W (j)W (jb) # 0 for
some j € Z*. To the contrary, as soon as W(jb) =0 for all j € Z*, u is non-degenerate.

Ezample. We fix b = 5. Let Wi(t) = %(1 — cos(27t))%.

The associated measure y = pyy, is non-degenerate (V/V\l(5j) =0 for all j € Z*). Figure
1 shows a realization of ¢ € [0,1] — pn([0,%]) for n € {1} U {30k : 1 < k < 10}. We see
the sequence (un)n>1 converges to a probability measure.

1, (0.0)

Figure 1

80000
Now slightly perturb Wi to get Wa(t) = 353603 (1 — cos(2nt) + .1 cos(10mt))*.

Figure 2 is plotted with the same choice of phases as Figure 1 and illustrates the
degeneracy of p = pw, after a small perturbation of Wi (W5 (1)W5(5) # 0).

Other random statistically self-affine measures are generated by multiplicative pro-
cesses having a martingale structure, for example, the canonical multifractal cascades
(CCM) [19, 15] and the multifractal products of pulses (MPCP) [3]. They led to a com-
pletely different criterion based on the multifractal function 7 (see (1) for a definition),
namely 7/(1) < 0, which holds on an open set of parameters. Nevertheless, we prove
for a certain class of functions W that the condition 7/,(1) > 0 sufficies for degeneracy
(Proposition 2).



,(0.)

Figure 2

Speed of degeneracy. When p is degenerate and W is positive and satisfies the principle
of bounded variations (8) (for example if W is Holder continuous), with probability one
limy, o0 = log ||pn || exists and is equal to 1y (1) (see (3)). We show that this limit ¢y (1)
is never equal to 0, so that u, converges exponentially fast to 0 almost surely.

The natural normalization. The measure v. When the sequence (fi5)n>1 is degen-
erate, it is natural to consider the normalized sequence of measures on [0, 1]

Hn
Vp =

 un([0,1])°

Limits of subsequences of (v,)n>1 are considered in [12]. We point out that the thermo-
dynamic formalism for random transformations ([17, 16]) insures the weak convergence of
vn when W is positive and Hélder continuous: let (2, B,P) = ((R/Z)®N, B(R/Z)®N ¢®N).
For w € Q, write w = (¢;(w))i>0. Define on R/Z f(t) = bt as well as the random Perron-
Frobenius operator Liog w = {Lj;, 1y, w € 0} acting on the space C (R/Z)? of families
{qw, w € Q} of real-valued continuous functions on R/Z by the formula

Lig wau®) = Y W'+ do)au(t).
vef=1(t)
Let 0 be the ergodic transformation on (£2,P) defined by: 6(w) = (bg;11(w))i>o-
It is easily seen that for all w € Q, n > 2 and g € C(R/Z)
[ st - Jo Ko i © -0 Ll w © Liog w (9) (D)
R/Z fR/Z ‘Clat?g woo ﬁleoué w © Liog w(D)(2)€(dt)

(here we identified [0,1) with R/Z and v,, with its restriction to [0,1)). The almost sure
weak convergence of v, is a consequence of Proposition 2.5 in [17]. Denote the almost sure
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limit by v. To go back to [0, 1], it sufficies to show (it is an exercise) that with probability
one, 0, as any fixed deterministic point, is not an atom of v on T.

Figure 3 illustrates the convergence of the sequence v, obtained by normalization of
tn in Figure 2 (W5 is positive).

v,(0.)

Figure 3

Notice that under the previous assumptions, if 4 is non-degenerate then it coincides
with v since p,,([0,1]) = 1 almost surely.

The multifractal structure of y and v. Here (as in [12]), if A is a positive measure on
[0,1] whose closed support is [0, 1], the multifractal function 7, of A is defined as

~—

1
T : ¢ — limsu ——/ I (8)77 A(db), 1
A-q r4)0p log(r) 0,1] (7‘( )) ( ) (

where I,.(t) = [t —r/2,t +7/2] N[0, 1].

Adding the restrictive condition that the range of W is isolated from 0 and oo, we
show that for a large class of functions, the multifractal function 7, of p takes the form

7u(q) = 1 —q+9w(q) (2)

where

1 n—1
Pw(q) = lim —E | log / Wb (t + ¢))dt | - (3)
n—oo N b [0,1] ]g)

This class of functions (see Section 5) strictly includes functions analogous to exponen-
tial of potential of weak bounded variations recently introduced for the thermodynamic
formalism ([24, 20]). In particular, this class includes functions W with a dense countable
set of jump points.



The main difficulty is to show that (2) holds under weak hypotheses. Once (2) is
established, the multifractal analysis of u, i.e. the computation of the Hausdorff and
packing dimension of level sets like

Xo = {t €[0,1]: }imwza} (> 0)

-0 logr
(see Section 5.3) follows as in [12] via the Legendre transform of 7,. We also show that
7, is differentiable at 1. Hence the exact Hausdorff dimension of the measure y, i. e. the

smallest Hausdorff dimension of a Borel set of full y-measure, is equal to —7,(1) (this is
also the case when y is a CCM or a MPCP).

If W is positive and Hélder continuous, the multifractal function 7, of v (recall that
v = p in case of non-degeneracy) takes the form (already obtained in [12])

m(q) =1 —-q(1 +9yw(1)) ++wl(q) (4)

and it will be seen using [18] that due to the ergodicity of # on (2, P), 7, is strictly convex
and analytic.

A natural question: does 7,(q) = 1 — ¢ + log, f[O,l] W(t)?dt on some nontrivial
interval when y is non-degenerate 7

Indeed, it is numerically impossible to answer this question (i.e. after computing
1-g+iE (logb f[o,l] Z;é Wbk (t + ¢k))dt) for large values of n). This problem is raised
in [11] and [12] (Section 7) under the form: does ¥ (q) simplify in log, f[o,l] WA(t) dt on
a nontrivial interval 7 We show (Theorem 3) that if W is positive and log W satisfies
the principle of bounded variations (8), the answer is negative except if W is constant.
This result is a consequence of the condition for non-degeneracy. The equality holds on R
when W is constant when restricted to each interval (k/b, (k +1)/b), 0 < k < b—1. We
conjecture that the answer is not positive except in this case.

Remark 1. It is nevertheless possible to construct a random measure m having the
function f : ¢ — 1—g+log, fol W ()1 dt as its multifractal function on a nontrivial interval.
Precisely, if W is a positive continuous 1-periodic function such that fol W (t)dt = 1, this
measure is obtained as the almost sure weak limit of the sequence of measures (m,)n>1
on [0, 1] whose densities with respect to £ are given by

n—1

(t) = [T WOk + dia)) if ¢ € [1/6%, (1 + 1) /6F),
k=0

dmy,
de

where the random phases ¢;; (k > 0, 0 < [ < b¥ — 1) are independent and uniformly
distributed in [0, 1]. By using technics developed for CCM and MPCP ([15, 1, 3]), one can
show ([4]) that m is non-degenerate if and only if f'(17) < 0. Moreover, assuming that m is
non-degenerate and defining J as the open interval of those ¢’s such that — f'(q)g+ f(¢) > 0
we have: with probability one, both multifractal formalisms of [6] and [21] hold for m on
—f'(J) (the largest as possible open interval on which they could hold), and 7,,, = f on J.



Relations with previous results, including Riesz products.

This study was inspired by [7], which gives no rigorous result only pictures that illus-
trate the motivation. Without knowledge of [10, 11, 12], [7] proposed random or deter-
ministic products of harmonics of periodic functions to generate multifractal measures in
a simple way.

The simplest Riesz product with random phases is the special case where the function
W (t) = 1+acos(2nt) for some a € [0,1); in this case the restriction of p, to [0, 1] is clearly
a probability measure for all n > 1. This and closely related “generalized” Riez products
are considered in [10, 11, 12], which do not point out the martingale nature of some of
these products, and do not study non-degeneracy. Instead of considering p, as we do, [12]
typically considers on [0, 1] a weak limit of a subsequence of (v, = pin/pn([0,1]))n>1. Our
Theorem 1 exhibits all the functions W for which this normalization is not necessary.

In the particular case of the simplest Riesz products, the approximate formula given
in [10] for the Hausdorff dimension of x is improved in this paper (Corollary 2).

[11] and [12] (see also [13] for a closely related problem in the deterministic case), per-
form the multifractal analysis of limit of subsequences of v, when the terms of the infinite
product are continuous and satisfy a principle of bounded variations. Both assumptions
are relaxed in this paper (Theorem 4 and Remark 8).

If W is positive and Holder continuous, the multifractal analysis of the limit v of v,
is implicit (but not complete) in [18], and in Section 6 we collect both results of [12] and
[18] to give a complete result for the multifractal spectrum of v.

Finally, [11] and [12] also study infinite products where the random phases are not
i.i.d. but satisfy a stationary ergodic property; the martingale structure disappears and it
is necessary to consider weak limits of subsequences of (pin/n([0,1]))n>1. If W is positive
and Hoélder continuous, [17] yields the almost sure convergence of the normalized sequence.

Section 2 introduces some definitions needed in the sequel, and says precisely in what u
is statistically self-sinilar (Proposition 1). Section 3 deals with the necessary and sufficient
condition for non-degeneracy of p,. Section 4 provides a lower bound for the Hausdorff
dimension of y in the general case. Section 5 and 6 perform the multifractal analysis of u
and v respectively. Section 7 briefly relates these measures with a kind of multiplicative
cascades measure.

2 Some definitions and statistical self-affinity.

Densities. For 0 <n < m and t € [0, 1], let

and P, = Py .



A™. For every integer m > 0 we denote by A™ the set of finite words of length m on
the alphabet A = {0,...,b— 1} (A% = {€}). Then for a € A™, |a| = m and I, denotes the
closed b-adic subinterval of [0, 1] naturally encoded by a.

A*. We denote [ J0°_, A™ by A* and {0,...,b—1}N by A*. The set A* acts on the left
on the disjoint union A* U@A* by the concatenation operation. Thus, for every a € A*, let
C, denote adA*, namely the cylinder generated by a. Denote by A the o-field generated
by the C,’s in 0A*. JA* is endowed with the standard ultrametric distance d defined by
d(a,b) = b1 where |[a Ab| =sup{n >1; a1...ap = by ...b,}.

dimy and dimp. The Hausdorff (resp. packlng) dimension of a subset of R (resp.
0A*) is considered with respect to the usual distance (resp. d), and denoted by dimpg
(resp. dimp). (See [9] for a detailed account).

I,(t) and I,(t). For t € [0,1] (resp. t € OA*) and n > 1, I, (t) (resp. Cyn(?))
denotes the closure of the b-adic semi-open to the right interval (resp. the cylinder) of
the n'® generation which contains ¢ (resp. 7). For r € (0,1), I,(t) denotes the interval
[t—5,t+ 5] N[0,1].

Given a positive measure v on [0, 1] and ¢ a point in the closed support of v, the “lower
log-density” «,, (t) and “upper log-density” @, (t) of v at ¢t are defined by

7—0 log r
I I
@, (t) = lim sup ~08 Mirlt)) d T(t)).
r—0 log r

Q,

If o, (t) = @, (t) simply write o, (t).
Similarly, if 7 is a positive measure on 9A* and £ is a point in the closed support of 7,

define C.(D)
A . o log D(Ch(t
o (1) = Hminf =
R 1 log 7(Cn (%))
() =1 —_—
ap(t) 1Trln_>5£p “nlog b

7 is the mapping from OA* to [0,1] defined by £ =#;...%;... P t; /b
7 is the unique measure on (JA*, A) such that for all a € A*, £(C,) = b4

Now if p is a nonnegative measure on (94, .A"), for n > 1 we define P,.p as the measure
whose density with respect to £ is equal to

d(Pp.p) ,~ ~ ~

Dt &) = Po(0) = Pa(r(@).
The arguments required for Proposition 1 also show that with probability one, the sequence
(Pp.p)n>1 converges weakly to a nonnegative random measure P.p. Moreover, since the
random factors W (b*(7 () + ¢x)), k > 1, are mutually independent, it follows from [14]

that the operator L : p r—) IE(P p) on nonnegative measures is a projection (by definition
if f € C(OT) then [ ,. f(t) E(P.p)(dt) = E( [5,. f(t) P.p(dt))).

Let i denote P.£. The following remark will be useful in the proof of Theorem 1. By
construction p = fio 7~!. For a € A* the probability distribution of ji(C,) depends only
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on |a|. Moreover, since A* is totally disconnected, we have ||ji|| = |[u|| = > ,c 4m #(Ca)
for all m > 0. Consequently

E(f) = E(||ul)e. (5)
We adopt the convention 0 x oo = 0.

Given a nontrivial compact subinterval I of [0, 1], the affine increasing mapping from
[0,1] onto I is denoted by f;. The length of I is denoted by |I].

Given two random variables X and Y, identity in distribution is denoted by X =Y.
Given a real z, [z] stands for the largest integer less than or equal to z.

Self-affinity. The statistical self-affinity property of u is made explicit now.

Proposition 1 (Statistical self-affinity) Fiz n > 1 and a non-trivial compact subin-
terval I of [0,1] with length b=". Define the sequence of measures (ul,)m>1 on I by

dyy,

For all m > n, the restriction of um, to I and the measure ul . are related by

pm(dt) = Pa(t) pin—n (d1) (6)

and the following properties hold:
(i) for all f € C(I) and m > 1, [; f(t)pl,(dt)

Il

1| Jig 1y f © f1(t)um(dt); in particular

d
sl = 1711l
(i4) With probability one, (ul)m>1 converges weakly to a measure p' as m tends to oo and
d . . d
for all f € C(D), f, @) 2 111 o f o Fi(0u(de); in particulor |47 < [1]]al.

(i4i) The measures ple, a € A™, are deduced from one another by an horizontal translation.

The verifications are left to the reader.

3 Non-degeneracy and speed of degeneracy.

The characterization of the non-degeneracy of u, i.e., when is y positive with positive
probability, is the first problem to be solved, and this phenomenon is expressed in The-
orem 1 via the Fourier coefficients of W. Then, Proposition 2 completes this result by a
different sufficient condition for degeneracy. Proposition 3 gives precisions on the speed
of convergence to 0 in case of degeneracy.

For every k € Z, let W(k) stand for f[o 1] W (t)e~2%mt dt. By assumption W(O) =1.
For every n > 1 let Y, stand for 1, ([0,1]); (Yn,0(¢o,...,¢n-1))n>1 is a martingale with
expectation 1, which converges to |||



Theorem 1 (Non-degeneracy) The following properties are equivalent:
() P([lull > 0) > 0;
(#1) (Yn)n>1 s uniformly integrable;
(#91) Vn > 1, Y, =1 almost surely;
(1) ||u]| =1 almost surely (u is a probability measure); .
(V) V=2V (o, -y dn-1) € Z"\{0,...,0}, Y524 jkb* = 0= TTp=o W(jk) = 0.

It follows from Theorem 1 that if property (v) is violated then ||y, || vanishes almost
surely, but E(||tn ||?) Th_eo 00 for all A > 1.

Proposition 2 (A condition for degeneracy) Suppose that W > 0 and log W satis-
fies the following weak principle of bounded variations:

n
p(n) =3 sup | log W(t) — log W (s)| = o(n). (7)
k—0 5:5€[0,1], [t—s|<b—F
Let Dy =1 _f[o 1 W (t)log, W(t). If Dy < 0 then  is degenerate. The same conclusion
holds if Dw = 0 and moreover ¢(n) = o(v/nloglog n).

Proposition 3 (Speed of degeneracy) Suppose that p is degenerate. Moreover, sup-
pose that W is positive and that log W satisfies the principle of bounded variations:

oo

=) sup |log W (¢t) — log W (s)| < . (8)
k—0 1:5€[0,1], [t—s|<b—F

1
Then, with probability one Yy (1) = lim = log ||u,|| ezists and pw (1) < 0.
n—o00 1

Remark 2. 1) The non-degeneracy condition is algebraic. It forces certain W(k) with
k # 0 to be null, and at least one W(kb) to be null. This characterization shows that
non-degeneracy holds on a closed subset of functions W with empty interior in the set of
nonnegative integrable functions on [0, 1] with mean 1.

2) Here are two simple conditions under which non-degeneracy holds:
a) There exists p > 0 such that W(k) =0 for all k € bP(Z \ VZ).
b) W is a trigonometric polynomial of the form

W(t)=1+ Z ag cos(2mmybP t) + by sin(2wmybP*t)
keK

where K is a finite set, the a; and by are so that ),z /a% + bi < 1 in order to insure
that W is nonnegative, the p; are nonnegative integers, and the my are positive distinct
integers so that: for all (ex)kex € {—1,0,1}\{(0,...,0)}, b does not divide Y, - j exm-

For instance, if b =5 and K = {1,3} then the choice m; = 1, m3 = 3 yields the functions

W(t) = 14 aq cos(2m x 5P1t) + by sin(27 x 5P1t) + ag cos(2m X 3 x 5P3t) + bs sin(27 x 3 x 5P3¢)
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where p; and p3 are arbitrary nonnegative integers.

3) Let T be the operator on the 1-periodic functions of L. (R) defined by

loc
b—1
t

: 1 L
fTf: tHsz::Of(ber).

It is immediate that for every k € Z, ﬂ(k) = f(kb) Soif Tf =0, f is of mean 0, and
if the function W defined by W = 1 + f is nonnegative, then the function W satisfies the
condition for non-degeneracy since W(kb) = 0 if k # 0. Conversely, all the functions W
satisfying the condition for non-degeneracy and such that W(kb) = 0 if k¥ # 0 are of the
form W =1+ g for some 1-periodic g € Lj, .(R) with T'g = 0.

This remark will be useful to construct explicit examples of functions with a dense
countable set of jump points satisfying the “weakened” weak principle of bounded varia-
tions in Section 5.1.

The proof of Theorem 1 begins with the following lemma, which explains the origin of

property (v).

Lemma 1 Assume that ZkeZ|W(k)\ < o00. Properties (i13) and (v) in Theorem 1 are
equivalent.

Proof. Notice that Y1 = 1 almost surely. Since ), [W (k)| < 00, t — Y okez W (k)e2imht
is a continuous version of W. Therefore, for every n > 2,

n—1
L= Yo = V(s s ) = /[0 JIwerer o a
k=0

1n—1
_ / H Z W(j)e%wjbk(t+¢k) dt
0

k=0 jE7Z,

1 n—1
- / So TI Wik)edn Eico it 460 gy
O (joydin—1)€L™ k=0
n—1
- S TIWeae s
(Joseedn—1)EL™, YR} jbk=0 k=0

Since ¢qg, . .., ¢n—1 are mutually independent and uniformly distributed, this holds almost
surely if and only if the function of n variables

n—1
Yy : (ugy ... up—1) €[0,1]" — Z H W (ji,)e2™ ko drbFuk
(Jor-dn—1)EZ™, SRT5 jrbk=0k=0
is identically equal to 1. This is equivalent to (v).

Proof of Theorem 1. To see that (i) and (ii) are equivalent, recall that the mapping L
defined in Section 1 is a projection. Moreover, it follows from (5) that L(£) = E(||u]|) 4.
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Consequently, the equality Lo L(£) = L(£) yields E(|||]) = (E(||#])))? and E(||z|]) € {0,1}.
Since (Y )n>1 is a 1-mean martingale, E(||+||) = 1 is equivalent to the uniform integrability
of the martingale. The same argument shows that (iv) implies (4¢).

It is clear that (447) implies (iz) and that (74:) implies (iv). It remains to show that (v)
implies (4i7) and (i) implies (v).

To prove that (v) implies (i47), notice that property (v) means that certain Fourier
coefficients of W are null. It is then standard that W is the limit in L!([0, 1]) of a sequence
(fp)p>1 of nonnegative trigonometric polynomials with mean 1 such that W(k) =0=
ﬁ,(k) =0forallk € Z* and p > 1: f, = W x g, where g, : t > (1 + cos(2nt))?/ f[o,l](l +

cos(27t))P dt so that ﬁ,(k) = W(k)g}(k) for all k € Z. In particular each f, satisfies
property (v), as well as the assumption of Lemma 1, so for every p,n > 1 almost surely

n—1
/ TT ot + o4)) dt =
0,1] g

Therefore, for every p,n > 1

|1_Yn| < /

n—1
O (t+¢r)) — [[ WO (¢ + ¢r)) | dt
k=0

< Z|fp (t+¢r)) — WO+ ¢x))l
x [[ @ E+e) T WO+ ew)
0<k’ <k k<k/<n—1
and .
E(|1=Yal) < Ifp = Wl Y 155 W5 = nllfy = Wpa.
k=0

By our choice of (fp),>1 we get (ii3).

Now suppose (i) holds but (v) fails. Fix ng > 2 and (lg,...,l,,—1) € Z™\ {0,...,0}
such that ZZOZBI IbF = 0 and HZO:BI W (l) # 0. Then, for every n > 1, choose (jo, - - -, Jn+ng—1)
such that jo =+ = j,—1 =0 and (jn,. .., fntno—1) = (lo,---,lny—1)- By using the Fubini
Lemma together with the 1-periodicity of W and the independences we get

E([Yn—f—no - Yvn]€_2i7r Ezzgo_ljkbk(bk ) = E(Yn+n0 o Ek+ o .kbkd)k)

n-l n+no—1
- / HE(W(bk(tJrsbk))) I EW @O+ de))e 200 at
0,1] fied
n+no—1
= / [T E(WE G+ g)e 2o ay
0,1] ke—n
no—1
= / H ezmlkbnﬂct W(bn—l—ku)e—inlkb""‘ku du dt
[0,1] k=0 [0,1]
no—1 no—1 ng—1
= / exp(2imb™t Z 1,b%) H b—(n+k)/ W (u)e~ 2 gy gt = H W(lk)
[0,1] 0 o [0,67+] 1l
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On the other hand E(|Y, 4, — Y,|) has to converge to 0 as n tends to oo since by (4i) the
martingale (Y;,),>1 is uniformly integrable, a contradiction.

Proof of Proposition 2. We proceed as in [23] to obtain the necessary condition of
non-degeneracy for CCM, via a size-biasing approach.

For every t € [0,1] and n > 1, define on (Q, ooy .-, ¢n,1)) the probability measure
P; , whose density with respect to P is given by

dPy ,,

p W) = Falt).

The sequence (Pn(t)))n>1

(a(¢0, een, ¢”_1))n>1' This allows us to consider P4, the Kolmogorov extension of (Pt ,)n>1

to (2, 0(¢n, n > 1)). Following [23] (Theorem 4.1.7)), to conclude, it suffices to show that
for all ¢ € [0,1], P;(limsup,_, pn(I5(t)) = c0) = 1. To see this, notice that under our
assumptions, it is straightforward that with probability one, for alln > 1, for all ¢, s € [0, 1]
such that |t —s| < b~ ",

is a 1-mean positive martingale with respect to the filtration

Pn(t)
(s

e ) < < e

=

It follows that
n—1
10g in (In(t) > —p(n) + > —log (b) + log W (b (t + ¢x)).
k=0

The random variables — log (b) + log W (bk(t + ¢4)), k > 0, are i.i.d. with respect to P,
with P, expectation —Dyy log b and positive variance (otherwise W' is constant equal to b,
contradicting fol W (t)dt = 1). Consequently, if Dy < 0 then P;(limsup,_,q pn(In(t)) =
00) = 1 follows from the strong law of large numbers and the property ¢(n) = o(n), and
if Dy = 0, the same follows from the law of the iterated logarithm and the property

¢(n) = o(v/nloglog n).

Proof of Proposition 3. It follows from the computations done in the proof of Theorem
2 in Section 5 (see also [12], Section 7) that, almost surely, 1w (1) = limy,_, o % logy || pnl|
exists. Moreover, 1 (1) is also the limit of 2X,,, where X,, = Elog ||un|, and for all
m,n > 1

Xn+m S 2C + Xm + Xn

It follows that the sequence X,, + 2C is sub-additive and 9w (1) = inf,>1(X, + 2C)/n.
Moreover, lim;, oo Xn = —00 since sup,,> E(||pn]]) < oo and limy oo [|al| = 0. This
yields (1) < 0.

4 A lower bound for dimg(u).

When the measure p is non-degenerate, it is natural to ask for a lower bound estimate of
its dimension. Under suitable assumptions this bound will prove in Section 5.3 to be the
exact value of this dimension.
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Proposition 4 Suppose that i is non-degenerate and that f[o 1] WP(t)dt < oo for some
p > 1. With probability one, for fi-almost every t € 0A*,

a;(t) > Dy =1~ W (t) log, W (t)dt > 0.
[0,1]

The Hausdorff dimension of y, dimg (u), was defined is Section 1.

Corollary 1 (Lower bound for dim (u)) Suppose that p is non-degenerate and that
f[o 1] WP(t)dt < oo for some p > 1. With probability one, 0 < Dy < dimpg(p) < 1.
In particular p is atomless when Dy > 0.

Corollary 1 is simply a consequence of Proposition 4, the relation p = jio 7' and a
Billingsley lemma (cf. [5] pp 136-145).

Proof of Proposition 4. For n > 1, ¢ > 0 and n > 0, the Chebichev inequality applied
to the probability measure ji and the random variables i"(C,, (%)) yields

i({ € 0A%; F1(Cu@)™PW ) > 1}) < Y EHI(C)IIPW ) = £, (n).
acAm

Applying successively Proposition 1, the Fatou lemma, and the Jensen inequality to
1+n |
(fr, Pa(t) prs_n(at)) " yields

acAn m— 00

Blfncm) < 07 2 Hmi“”‘:«/fa B0 ufz_n(dt))m)

VAN

P 5 tmint® (Lt [ Pyt (a))
a€An Lo
n

b’ﬂ/ﬂ(Dw—l—E) ( W(t) 147 dt)

[0,1]
(we also used the independences and the property: since p is non-degenerate, it fol-
lows from Theorem 1 and Proposition 1 that |2 .|| = b~"). This yields E(fnc(n)) <

b”"(f‘E’LO(")) 80 32 p>1 E(fne(n)) < oo if  is small enough. Finally, for every € > 0, with
probability one " o a({f € 9A*; i"(C,(F))b""Pw =€) > 1}) < co. One concludes with
Borel-Cantelli Lemma.

To see that Dy > 0 we proceed as follows: on the one hand, we learn from Proposition
2 that Dy > 0 when W is a positive trigonometric polynomial satisfying the condition
for non-degeneracy. On the other hand, for every p > 1, the set of these polynomials is
dense in the set of functions of LP([0, 1]) satisfying the condition for non-degeneracy.

5 Multifractal analysis of u.

We have to assume some restrictions on the function W.

14



(H1): property (v) of Theorem 1 holds for W (i.e. u is non-degenerate).
(H2): 0 <w < W <w < oo for some real numbers w and .

Our third assumption allows certain functions W to have a dense countable set of jump
points. This assumption includes a condition inspired from the weak principle of bounded
variations (see Remark 3 1)) recently considered in the thermodynamic formalism (see
[24], [20]), but it is less restrictive than this principle:

(H3): “Weakened” weak principle of bounded variations for log W: there exists a sequence
(Sn)n>1 of finite subsets of [0,1], all including {0,1}, such that

n

hn = Z sup |log W (t) — log W(s)| = o(n)
=0 Jt,5 €[0,1], |t —s| <b7F,
SpN[t,s]=0

and

= mi bk < inf — = .
mp, =min{k €N: b _t,seg:,t;éslt s|} = o(n)

Remark 3. 1) The weak principle of bounded variations (w.p.b.v), for example in [24],
would assume the more restrictive condition that there exists ng > 1 such that S, = S,
for all n > ng, i.e. W should be piecewise continuous. Even in this case, if W is not
continuous, the fact that we consider random phases creates complications that, to be
circumvented, necessitate the new ideas we develop in the case of an infinite number of
jump points.

2) We adapt the approach of [12] to find 7,. The main difficulty is located in the impos-
sibility, under (Hs), to directly applying the (key) sub-multiplicative ergodic theorem of
Kingman involved in [12].

Before beginning the study of the multifractal structure of y, we exhibit some nontrivial
examples of functions W satisfying the above assumptions.

5.1 Nontrivial examples of functions .
We shall use Remark 2.3) in Section 3, where the operator 7' was defined.

Functions W (with a dense countable set of jump points) of the form 1+ 3 -, gp
where the g, are piecewise Holder continuous with at least two jump points and Tg, = 0.

Fix (M, )n>1 @ non-decreasing sequence of integers such that m,, = o(n) and lim,, o, M, =
00.

Fix a sequence (ap),>1 € (0,1]N .

For every p > 1, construct a l-periodic function f, € L. (R) with the following

loc
b—-1
properties: (i) fp is given on [0,1/b) by t — — Z fp(t+3/b). (i) The set of jump points
j=1

of f, in (1/b,1) is non-empty and finite, and f, is a,-Holder continuous between two
consecutive jump points.

15



Due to (i) we have T'f, = 0 so f;,(kb) =0 forall k € Z.

Then denote by D, the set containing 0 and 1 and all the points where the function
fp jumps. Denote by ||fp|l the supremum of |f,| and by C, a positive real number such
that for all t,s € [0, 1] such that [t,s] C [0,1] \ D,,

|fo(t) — fo(s)] < Cylt — s]%.

Assume that the sets D, \ {0,1,1/b} are pairwise disjoint. For j > 1, define R; =
Up—1 Dp. Fix (it is easy to construct or~1e) a non-decreasing sequence (j, ),>1 of integers such
that for every n > 1 large enough, b~"*" < infy se g, 145 [t—s|, and lim, 0 R, = UpZ1 Dp.
Choose S, = R;j,. It follows that m,, < m, = o(n).

Finally, choose a sequence of real numbers (5,),>1 such that
Zle |ﬂp| [ fplloo < %
1
lim =" 15l% _ _

n—o00 N, 1—bp—
p=1
Then define
W=1+Y Byfp
p>1

By construction W jumps at every point of U,>1D,\ {0,1,1/b}, W > 1/2, W is bounded,
f[o 1 W (t)dt =1 and W satisfies the condition for non-degeneracy since TW = 1.

It is clear that we can force |J,»; D) to be dense in [0, 1].

Now, if n > 1 is large enough and [t, s] C [0,1]\ S, is such that |t — s| < b~ for some
my < k < n, then by construction all the f,, 1 <p < j,, are continuous on [t, s], so

|log W(t) —log W(s)| < 2[W(t) —W(s)

In
2 16,10~ + 43 1Bl 1 Fpllco-

<
p=1 P>Jn
Consequently
h
;n < 27 S}z)p1 W (t Z|ﬁp\c Zb apk+4z |1Bpl [ fpll oo
te

P>jgn

B|C
< 2™ up Wit 21' o a3 15l e

i)
te[0,1] P>

It follows that lim, o0 hyp/n =0
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5.2 The multifractal function of u.

As in [12], we begin with the identification of a natural candidate to be the multifractal
function of . Proposition 2 provides sufficient conditions on W for Dy to be positive (here
p is non-degenerate). In this case, Corollary 1 says that p is atomless. We conjecture that
the non-degeneracy of p implies Dy > 0. Without this information, we have to consider
the case Dy = 0 in our statements and proofs.

Theorem 2 (Multifractal function 7,) Assume (H,), (H2) and (H3).
1) Suppose that 0 < Dy < 1.
(i) With probability one, the limit 7, as v — 0% of

1 _
1€ R 7(0) = o log /[0 PUO)

1
exists and it is equal to g e R+—>1—¢+ lim —E <logb / Pn(t)th> .

If Dyw > 0 then the function T, is convex and decreasing, and if Dy = 0 then 7, is
convez and decreasing on (—oo, 1) and null on [1,00).

(i) Ty is differentiable at 0 and 1 with 7,(0) = —1+ f[O,l] log, W (t)dt and —7,(1) = Dy .
T, s not affine on [0, 1].

2) Dy =1 if and only if W = 1 almost everywhere; that is p is the Lebesgue measure and
Tu(Q) =1-gq.

Theorem 3 Assume (Hy), (Hs) and (Hs).

1
(1) Tu(q) <1 —q+log, / W (t)?dt for all ¢ € R, with equality for ¢ € {0,1}.
0

(74) Suppose W is positive and log W satisfies the principle of bounded wvariations (8).
Then, either W is constant, or

1
7.(q) <1 —gq+log, / W (t)?dt
0

for every g € R\S, where S is a discrete set that contains {0,1}. Moreover, if supyeo 1] W () >
b then S is finite.
(133) If W is equal to a positive constant wy on every interval (k/b, (k+1)/b) (0 <k <b—1)
then for all g € R
1 b—1
Tu(q) =1 — g+ log, / W (t)?dt =1 — q+ log, sz.

0 k=0
Remark 4. In the proof of Theorem 3(ii), we show that if W is non constant, positive,
and log W satisfies (8), then 9y (q) < log, fol W(t) dt for all ¢ € R except on a discrete
set that contains {0,1}. The proof is valid even is W does not satisfy the condition for
non-degeneracy.

The proof of Theorem 2 needs two lemmas, namely Lemma 2 and 3, both concequences
of weak assumption (Hs). The proofs of these lemmas are postponed until after the one
of Theorem 2 and the statement of Lemma 4. The proof of Theorem 3 ends this section.
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Lemma 2 There exists an increasing positive function @(n) = o(n) such that with prob-
ability one, for n large enough, for all t,s € [0,1] with |t —s| < b7 ™,
—1 k)
=9 < Z:(l) W (" (t + ¢x)) < o#®),
[TZ0 W (" (s + ¢%))

Remark 5. Because of the assumption (H3) on log W, the set of integers n for which

the inequalities in Lemma 2 hold depends on w € ). Consequently, it is not possible to

obtain the first part of Theorem 2 as directly as the corresponding result in [12] (Th. 4).
We also need Lemma 3 which involves new definitions.

Fix v € (1/2,1). For every j and p > 0, denote by ¢;, the finite word written with
p X j times the letter 0 (€;0 = €), and then for n > 1 denote by E;, the event

Ejn={Vac 6j,nflAja #{O0<Ek<j—m;:
S; N VITE(L, + ¢ 1yj04) mod 1] # 0} < 57

Then define M;,(w) = #{1 <1 <n; w ¢ Ej;}.

Lemma 3 There exists a sequence (;)j>1 tending to 0 at oo such that for every j > 1
large enough, with probability one, for n large enough M;, < B;n.
Proof of Theorem 2. Proof of 1)(i). We proceed in four steps.

Step 1: We show that for every ¢ € R, lim,_,o+ 7(q) exists almost surely if and only
if limy 5001 — g + %logb f[o 1] Hz;é P, (t)?dt exists almost surely. Moreover, these limits
are equal whenever they exist.

Notice that it suffices to establish this property when r tends to 0 along the sequence
(b™™)n>1. We distinguish two cases.

First case: ¢ —1 > 0. For every n > 1 and a € A", define I, as being the closed
b-adic interval of the n™ generation immediately on the left side of I, if I, C (0,1]
and () otherwise; also define I as being the closed b-adic interval of the n'" generation
immediately on the right side of I, if I, C [0,1) and @ otherwise.

Fix n > 1 and a € A™. For every t € I,, we have I)-»(t) C I, UI, UI}. Due to the
fact that ¢ > 1, this implies that

p(Ty=n ()77 <397 ((I) T + p(La) T + ()77,

and then

/[0 ]u(fzrn(t))q‘1 pldt) <3970 Y ()" + ) + (I ul). (9)
o1 acAn

On the other hand, if a € A", I, C I,-n(t) for every t € I, so

() = / p(I)T " p(dt) < / iTyn (80 ()

I, Io
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and

> n) < [ e @) ), (10)

acAntl [0,1]

Now, we use the following important remark. Eventhough we do not know that y is
atomless, the theory in [14] tells us that, with probability one, the b-adic points are not
atoms of u. It follows that with probability one, for every a € A*,

U(Ia) = lim U\a|+m(I ) = lim I_)|a|(t)f)\a|

m—00 m—oo [ ’
a

ol 0) ds. (1)
Moreover, by Lemma 2, with probability one, for n large enough, for alla € A™ and m > 1

f] )Pontm(s)ds
f] nn—|—m s)ds ~

e?(m)

where t, = inf(I,). But due to Proposition 1(i) and Theorem 1(%i7) we have

/Pn,m_m(s) ds=b""
I

for every interval I of length b~". Consequently

< P Punim(s)ds
= b "P( ) =
and by (11)
o) « _Pa) o)
e S B (i) S e\, (12)

Now, if I € {I,,I,;,I}} is non empty, applying Lemma 2 with (¢,s) = (inf(I), inf(J,)) in
(12) written with I ylelds

So

(1)1 (1)
exp(—h(Q)SO(n)) < b nl(Lq p— fp (ta)7 ~

where h(q) =1+ 2|g — 1|]. A last application of Lemma 2 yields

< exp (h(g)p(n)), (13)

o) < S P& ds

S B )q_

and we deduce from (13) that with probability one, for n large enough, for all a € A™ and
I a non-empty element of {I,, I, ,I}},

exp ([l + lpm) < 40 IR

< exp ([lg] + h(@)]p(n)). (14)
Finally, the conclusion is a consequence of (9), (10) and (14).
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Second case: ¢ —1 < 0. Fix n > 1 and a € A"*'. We saw that I, C I,-«(t) for every
t € I,. Consequently

A;#mnmw*MMS AR (15)

aeAn+1

On the other hand, ifa € A", fix a’ € A"*? such that I, := I, C I,. We have I, (n42)(t) C
I, for all t € I so

mmqus/ummmmwuwy
II

This yields
Ejm&wﬂmms/ W(Ty-mny ()7 p(dt). (16)
acAn [0,1]

By using Lemma 2 we get, with probability one, for all n large enough and a € A",

)
b2 +oni2) < o)
- ~ p(la)

=

so by (16)

Y nlla)? < BPw Pt rent?) / Ty (8)) 1 pu(dt) (17)
aeA“ [011]

and the proof ends like in the first case by using (15), (17) and (14).

Step 2: we use the notations introduced with Lemma 3. For all j and n» > 1 and all
q € R, define

an=M“WA Pl 1yjmg ()7 dt.

€j,n—1

(Yj1(q) = f[o 1 P;(t)?dt). Define Cy = max(|log w|,|log w|). We use the notations of
Lemma 3 and prove the following property:

(P): for every j large enough, with probability one, for all n > 1 large enough, 0 <7 < j—1
and ¢ € R,

exp (— h(j,n,q)) < %% < exp (h(j,n,q))

where (j,n,q) = 2|q|hjn + Cw|q|(2B;5n + 2(37 + m;)n + ).
It follows from the definition of M}, and the inequality W9 < exp(Cy|q|) that

exp (— Cowlal (M5 +9) < 2D < o (gl (0 + )

with

Z:/[m] H Py_1yj5()? dt.

1<i<n,
wekj

20



Moreover, again because of W? < exp(Cw|q|), we have e~ W47 < Y;;(q) < e“Wldli for
each 0<[I<n-1. So

o Yojving
o (= Ol ) < =P
=1, w 7,0 9

Define /) (w) = min {1 <[ < n; w € E;;}. By construction we have

Z= 3 / Il Pe-nsus)ae

acAt1-05 Ve 1y <i<n,
weE;j,

< exp (Cwlq|(2Mjn j +i)). (18)

By the 1-periodicity of W, the integral

/1 H P15 (1) dt

@ 1 <Il<n,
UJEE]'J

does not depend on a € A1=1)J_ Tt follows that

Z = b(ll—l)j/I H Pyt (t) dt.

€01 —1 [1<I<n
wEEj,l

Now, by using the definition of E;; and computations similar to those used in the first
step and in the proof of Lemma 2, we get

exp ( — 2|g|h; — 2Cwlq|(j7 + mJ)) < < exp (2|Q|hj +2Cwlq|(57 + m]))

_Z
.Y—jall (q) Zl
with

A= bllj/I H P(l—l)j,lj(t)q dt.

5,0 L1+1<i<n
UJEE]'J

Repeating the same argument until the last [ for which w € E;; we get

~ Z
—h .7 ) S T —
exp (— h(j,n,q)) Mieien

Vg <O (R(jsn,9)) (19)

wEEj,l

where h(j,n,q) = (2|glh; +2Cw|q|(37 +m;))(n — Mj ). Then Property (P) follows from
Lemma 3, (18) and (19).

Step 3: Fix ¢ € R. We show that the limit in step 1 exists almost surely and is equal
to 1 — g+ Yw(q)-

By construction, for every j > 1 the random variables Yj;(q), I > 1 are i.i.d. and
integrable. It then follows from step 2 and the law of large numbers that for every j large

21



enough, with probability one,

h; JjT+m
—2|Q|7.J —2Cw|q|(B; + fj) + ~E(log Yj,1(q))
log Y]
< liminf 28 V100
N—o0 N
log Y;
< 1imsupw
N—o0 N
g j’y -I-m]-

h; 1
2|CI|7-] +2Cwlq|(B; + #) + EE(IOg Y;1(q))

and the conclusion follows by letting 7 tend to oo.

Step 4: We show that with probability one, the convergence as r — 07 of 7.(¢) holds
for all ¢ € R, and lim,_,o+ 7.(¢) =1 — ¢ + Yw(q).

It suffices to notice that almost surely, for n > 1 and ¢q,¢' € R,

1 1
| log Ya,1(q) — - log Yo1(d) < Cwlg—d|,

and then to use step 3, together with (9), (10), (15) and (17). The property of the limit
function 7, to be convex non-increasing is inherited from the 7. The fact that 7, is
decreasing if Dy > 0 and decreasing on (—o0,1) and null on [1,00) if Dy = 0 will be
explained in Remark 7 (Section 5.3).

Proof of 1)(ii). It follows from the proof of (i) (step 3) that the function 7, is the
limit of the sequence of convex functions f, = E(7,-»). Moreover, due to the concavity
of the logarithm, for alln > 1 and q € R, fo,(q) < f(q) = 1 — g+ log, f[O,l] W(t) dt,
so 7,(q) < f(g). Then, the differentiability of 7, at 0 and 1 results from the equalities
fn(0) = £(0) = 1, fu(1) = f(1) =0, £,(0) = £'(0) = =1 + [, logy W (t)dt and f,,(1) =
f'(1) = =Dy for all n > 1. 7, is not affine on [0, 1] because of the values of 7,(0), 7,(1)
and 7,,(1).

Proof of 2)(ii). We have Dy = 1 if and only if the derivative of the convex function
f:qm— f[o,l] W(t)dt at 1 is null. Since f(0) = f(1) = 1, this yields W = 1 almost
everywhere. In this case u is the Lebesgue measure and 7,(q) =1 — ¢ for all ¢ € R

To prove Lemma 2 and 3, we need
Lemma 4 For vy € (1/2,1) and n > 1 define p, = p,(7y) the probability that there exists
a € A" for which #{0 < k <n —my; S, N[B¥(I, + ¢x) mod 1] # 0} > n.

The series ), 1 Pn converge.

Proof of Lemma 2. Fix v > 1/2. By Lemma 4 and the Borel-Cantelli Lemma, for
almost every w € €2, there exists ng(w) > 1 such that for n > ng, for all @ € A™

#{0<Ek<n—my S, NI, + ¢r) mod 1] # B} < n?.

This implies that for n > ng(w), a € A, and t,s € I,, we have
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1> log [W (¥ (¢ + )] — log [W (6" (s + )]
k=0

IA

> | Tog [W (6" (t + ¢x))] — log [W (" (s + )|
Snﬂ[bk(olf—lS:)_mr:od 1]=0

+(n” 4 my)(log (W) — log (w))
< hp + (07 + my)(log (W) — log (w))

by definition of h,. So the conclusion follows if we take
p(n) = 2[hn + (n” + my)(log (w) — log (w))]-

Proof of Lemma 3. By definition, for j and n > 1,

n
M]zn(w) = Z IQ\E]'J (U.))
=1

where the random variables lovg;,» 1 < I < n are independent copies of a Bernoulli
random variable with parameter p; (defined in Lemma 4).

2

Define g; = % (B; tends to 0 at oo). Then, the estimate of P(M;, > [B;n]) is

standard and one has >, - P(M;, > [B;n]) < occ.

Proof of Lemma 4. Fix v > 1/2. For every n > 1, denote by N,, + 1 the number of
elements of S,. Notice that N,b~™» < 1. The ¢ being uniformly distributed, for every
0<k<n—m,andac A",

P(S, N [B*(I, + ¢x) mod 1] # ) = N,b* ™.

So the probability that b* (I, +¢;) mod 1 meets S,, for at least n” values of k in [0, n —m,)
is bounded by (we use the independences between the ¢y)

n—mp

l
O S S |

I=n7 0<k1<-<kj<n—nm t=1

n—mn

— Y N 3 P ki

l=nY 0<k1 <<k <n—nm

By bounding every term of the form it ki by b iZom—mn—i and the number of terms in
l )
Zogkl <ok <n—mim bi=1ki by nl, we get

n—mn n—mny
a, < Z erlbfnlnlb(nfmn)lf(12—l)/2 < Z nlbf(ﬂ,l)/g < nn+1b7(n2777ﬂ)/2
I=nY I=n7
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(we used Npb™™n < 1). Asy > 1/2, an elementary study shows that 37, -, b"a, < oo.
Since p, < b"a,, we have the conclusion.

Proof of Theorem 3. According to the notations of the introduction, denote by f the
function ¢ — 1 — g + log, fol W (t)?dt.

(7) This is shown in the proof of Theorem 2(i:) or Proposition 10 in [12].

(73) Suppose that W is not constant. Let S be the set of those points ¢ € R such that
7u(q) = f(q). Suppose that there exists pg € S and (gn)n>1 a sequence of pairwise distinct
points in S such that ¢, — pg as n — oo.

For every ¢ € R, writing 7,(q) = f(q) is equivalent to 9w (¢q) = log, fol W(t)?dt, i.e.
Yw, (1) = 0, where W, = W1/ fol W(t)2dt. Since W1 also satisfies the assumptions of
Proposition 3, it follows from this proposition that 7,(¢q) = f(g) is equivalent to the non-
degeneracy of the measure p, associated with W, like u with W. By Theorem 1(v), the
non-degeneracy of y, implies that for every j € Z*, V/[Zl(j)ﬁ/z(bj) = 0, or equivalently
W4(j))Wi(bj) = 0. Now suppose that W7o(b) # 0. The same holds for Wi(b) in a
neighborhood of pg, so we can assume without loss of generality that V[//?"(bQ) = 0 for all
n > 1. Since the mapping ¢ +— ﬁ/\q(bQ) has an analytic extension to C (w < W < w),
this yields ﬁ/\q(bQ) = 0 for all ¢ € R On the other hand, since W is not constant,
({t € [0,1] : W(t) > 1}) > 0 and either limq_,oo|f[0,1}W(t)q cos(2mb*t) dt| = oo or

limg_ o | f[O,l] W (t)9 sin(27b%t) dt| = oo, a contradiction.

Supposing that VT/H)(I)Q) # 0 leads to a similar contradiction. Consequently, the set S

is discrete. If supyc ;] W (t) > b then f(gq) > 0 for ¢ large enough. Since 7,(q) < 0 for
g > 1, it follows that the discrete set S is bounded and so finite.
(473) The function W, = W9/ fol W (t)?dt is of the same kind as W. In particular, W//?q(bj) =
0 for all j € Z*. Consequently, property (v) of Theorem 1 is fulfilled by W,, hence the
associated measure pyy, non-degenerate. It follows that ||uw,n|| = 1 for all n > 1 and
g € R This yields the conclusion.

5.3 The multifractal spectrum of u.

We denote 7, by 7 in this section.
If a > 0, define
(X, ={te[0,1]: a,t) =a},
Xo={te[0,1]; @
{ Xa=A{t €[0,1]; au(t) = a},
Vo ={t€[0,1]: a,(t) > a},
(Ve={te[0,1]: a,(t) < a}.

We exclude the case where W is almost everywhere equal to 1. It follows from Theorem 2
that we have aint < gup, Where ajns = inf {7/ (¢); ¢ > 0} and agyp = sup{—7’(q); ¢ <
0} (ains = 0 if Dy = 0).
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Theorem 4 Assume (Hy), (H2) and (Hs).
(¢) With probability one, for every ¢ > 0 such that —7'.(q) > cint and L € {H, P}

0 < =74 (9)g +7(g) <dimp Vs NV < —7/ (q)g +7(q)
and for every ¢ <0 such that —7' (q) < agyp and L € {H, P}

0 < —L(q)g+7(q) < dimp V_p1 (s NV =9 < —7' (g)g + 7(q)-

Moreover, at each q where the convez function T is differentiable and —7'(q) € (Cint, Asup),
for every E € {X,X, X} and L € {H, P}

dimy, E_;(p = —7'(q)g + 7(g) > 0.

(i3) With probability one, VonV? = 0 for all (o, B) such that o < 8 and o, B] ¢ [Gtint, Qsup-

Remark 6. 1) Theorem 4 concludes as Theorem 1 in [12] for y, the difference being that
now W satisfies the weak assumption (H3).

2) In the proof of Theorem 4(i), we deal with atomless measures p, in order to compute
some Laplace transform and use the large deviations theory to show that i, is carried
by V—r;(q) NV~ (@ When Dy = 0, we are not able to prove that u; = u is atomless
since we only know that dimg u = Dy = 0 (Corollary 2). This is why we cannot claim
that Xy is not empty. If we could prove that p is atomless, this would yield Xy # () and
3) One also could derive similar results in the framework of “box” multifractal analysis
([6])- Also notice that when W satisfies (8), u is a kind of random version of quasi-Bernoulli
measures considered in [6)].

Theorem 4 will be obtained by using a convenient family of auxiliary measures. Our
approach is a slight modification of the one of [12]. Instead of constructing these measures
directly on [0, 1], we obtain them as projections of measures defined on 9A*.

Let Q* be a subset of Q such that P(Q*) = 1 and for all w € Q* the martingale limit
measure [ exists. Fix w € *. Then for ¢ € R, let fig,, n > 1, be the sequence of measures
on 0A*, defined by R

dfign 7 Po(w(d))?
;= P, (m(t))edt’
at T T Palr(®)
It possesses a subsequence fig . (g) Which converges to a probability measure fiy with the
following property:

Proposition 5 For P-almost every w in Q*, for all q € R, for ji,-almost every t € OA*:
if ¢ >0 then

—Th(@)g+7(q) < az, (1) < @, () < —7L(g)q + 7(g);
if g <0 then
~7L(q)q +7(q) < o, (}) < @, (8) < —7(g)g + 7(9)-



Corollary 2 Due to the differentiability of T, at 1, with probability one the Hausdorff
dimension of p is exactly Dyy.

Remark 7. 1) It follows from Proposition 5 that —T;gn(q)(q)q—l—T(q) >0 for all ¢ € R, be-

cause the logarithmic density of a measure cannot tend to —oco. This forces —7/ gn(q)(q)q +
7(q) to be positive if —Tégn(q)(q) € (Qinf, Xsup)-

2) Since 7(1) = 0 and 7 is convex non-increasing, it is decreasing on (—oc, 1). Moreover, if
Dy >0, i.e. 7'(1) <0, 7 becomes negative on (1,00). Consequently, it is also decreasing
on [1,00), otherwise —Tégn(q)(q)q + 7(q) < 0 for some g > 1, contradicting Proposition 5.
If Dw =0, i.e. 7/(1) = 0, since 7 is convex non-increasing, 7(¢) = 0 for all ¢ > 1. This
completes the proof of Theorem 2 1)(3).

The proofs of Proposition 5 and Corollary 2 are postponed.

Proof of Theorem 4. i) As a consequence of Proposition 5 and a Billingsley lemma ([5]

pp 136-145), for P-almost every w € Q*, for every g € R such that —'r;gn(q)(q)q +7(q) >

0, the measure defined on [0,1] by pg = fig o 7! is of Hausdorff dimension at least

- on(a) (9)g + 7(g). In particular, it is atomless. Moreover, this measure is the weak limit

of the sequence fign;(q) = Hgn;(q) © 7L So, forn >1and a € A"
() = lim J1, Pa(®) Py () ()7 4
I nj(g)—oc0 f[O,l] Pn(t)qpn,nj (q) (t)q dt

The fact that | 1, Prn;(q) (t)?dt does not depend on a € A™ together with the same use of
Lemma 2 as in the proof of Theorem 2 yield for n large enough, a € A™ and s € I,

b Pa(s)? b P, (s)1
Jiom Payrdt =1 Jro. Pa®)? dt

Now, proceeding as in the proof of Theorem 2, we obtain for P-almost every w € Q*, for
every g € R such that —7/ (q)(q)q +7(q) >0, for all 8 € R,

sgn

e~ lale(n) (I,) < 4

n—0o0 M

tim  log, /[ i(Tyn (8)) gdt) = 7(B + q) — 7(q).

)

Then mimicking the proof of Theorem 1 in [12] or the one of Theorem 2.18 in [21]
(they use a standard large deviations theorem (see [8])) we obtain that y, is carried by

V,Tjr(q) NV~ This yields the lower bound for the dimensions.

The upper bounds for the dimensions are obtained as in [12] (Th 1). An alternative
approach is to use Theorem 2.24, Proposition 2.5 and 2.6, and Lemma 4.4 in [21]. Notice
that to make use of [21], it is nevertheless necessary to replace (it is immediate) the
property of the measure in [21] to be a doubling measure by the following: via Lemma 2,
with probability one, there exists a constant C' > 0 such that for all  small enough, for
all ¢t € [0,1],

M(IZT(t; < CeC(I-log(r))
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e(—log()) _

with lim,_,g Tog

(%) It is a consequence of Lemma 4.4 in [21].

Proof of Proposition 5. Since JA* is totally disconnected, for all w € Q*, for all ¢ € R,
for all a € A*
/1 (C ) . 11 f]a Pn(t)qpn,nj(q) (t)q dt
e nj(g)—oo fO 1] (t)an,nj(q) (t)q dt’

Then, computations similar to those performed in the proof of Theorem 2 yield for P-
almost every w € Q*, for every g € R, for all 8 € R,

1 . B o~
lim —logb Z fiq(C BH = lim —log, /E)A* Hq(Cn(t))’B fiq(dt)

n—oo N acAn n—oon
= m((B+1)q) — (B+1)7(g).

Here again, the large deviations theory yields the conclusion on the logarithmic density.

Proof of Corollary 2. It is a consequence of Proposition 5 applied at ¢ = 1 and the
existence of 7/(1), together with a Billingsley lemma ([5] pp 136-145).

6 Multifractal function and spectrum of v.

If W is Holder continuous, we consider the measure v obtained in Section 1: v = p if
p is non-degenerate and v is the weak limit of p,/||uy| otherwise. Due to Theorem 3.1
and 3.2 in [16], the measure v is almost surely equivalent to a probability measure u‘l’ég W
such that the probability measure defined on R/Z x Q by

fog w (dt, dw) = pigg w(dE)P(dw)

is ergodic with respect to the skew product (t,w) + (bt,0(w)). It follows that, almost
surely, v and u‘l‘(’)g w have the same multifractal nature . The results on multifractal
analysis of Gibbs measures in [18] would provide the Hausdorff dimension of the level sets
X, only for all @ almost surely instead of almost surely for all «. But we keep from the
approach in [18] (Section 5) the following information: with probability one (with the
notations of Section 1) the limit function

n—00 N

g €R - lim = log, / [ Bl oo Ll wo o L wa (D0 (20)
Z

exists and is strictly convex, and analytic; moreover, by definition it is equal to ¢ — ¥ (q).
Define for v and a > 0 the sets X%, X%, X., V¥ and V*® as X,, X, Xa, Vi, and

Ve were for p.

Theorem 5 With probability one: (i) the multifractal function of v is strictly convezr and
analytic, and is almost surely given by 7,(q) =1 — q(1 + ¥w (1)) + vw(q).
(ii) For allq € R, E € {X,X, X} and L € {H, P}, dimy, E @ = —7,(9)q + 1,(q)-

(#33) VY N VYB =0 for all (a, B) such that o < B and [o, B] ¢ —7/(R).
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Proof. The existence of the limit function 7,(q) is obtained as in Section 5.2 for y. The
multifractal spectrum of v is derived like the one of y in Section 5.3. The new point here
is only the strict convexity and the analyticity of 7, which follows from the existence of
the limit in (20).

Remark 8. If W satisfies only satisfies (Hy) and (Hj), after replacing 7 by 7,, the
conclusions of Theorem 4 are true almost surely for any limit v of a subsequence of v,.
This holds for a larger choice of function W, since W does not necessarily satisfy property
(v) of Theorem 1. In particular, given a dense countable subset S of [0,1], it is easy to
construct W jumping at every point of S and satisfying (Hs).
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7 A multiplicative cascade counterpart.

This section makes a parallel between the measures studied in previous sections and mea-
sures obtained by a multiplicative cascade construction.

Let (Wy,...,W,_1) be a nonnegative random vector in R? such that b~! Z;’-;é W; =
1 almost surely. Let ((Wo,...,Wy_1)(n))n>1 be a sequence of independent copies of
(Wo,...,Wp_1). Then let u be the almost sure weak limit of the sequence of probability
measures i, on [0,1] given by

d - :
T (t) = T[] Wau (k) it € Loy,
k=1

for every a = ay ...a, € A™. This sequence is a martingale which converges almost surely
weakly to a measure y on [0, 1].

The parallel with the measure studied in the previous sections is now easy to make by
using Proposition 2: define for n > 1 and a € A™ the sequence (u2),>1 by

m
)= [[Wa,(n+ k) ift€ La. a,
k=1

dps
dl

for every o' = a)...al, € A™. Then Proposition 2 holds if one specifies that I is one of
the I, and if (6) is replaced by the simpler relation

n

s (dt) = T Wa, (B) s ().
k=1

The reader will adapt the approach used in Section 4 to obtain the following result (in
this construction, all the computations are easier, mainly because the auxiliary measures
have the simple expression

[T, Wi (k)
Ial...an = _
pal ) T (0 Wi (k)

)
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Theorem 6 Assume that ZZ;% E(1{w, >01|log Wi|) < co. Define the analytic decreasing
convex function 7, : ¢ € R — —q + E(log, Y0, Liw,>0yWy). Define I = —7,(R). With
probability one, dimgy Eﬁﬂb(q) = —'rlft(q)q + 74(q) for all g € R and E& =0 for all « ¢ I,
where

lim 08 #Un(1) _ o).

Fa = {t € supp(u); lim = |Zn ()]
n

Remark 9. The measure considered in this section is a version, with stronger correlations,
of the microcanonical cascade measure m ([19]) obtained as follows: each node a of A* is
equipped with its own copy of (Wy,...,Wy_1), (Wo,...,Wp_1)(a), and these copies are
mutually independent; the probability measure m is the almost sure weak limit of the
sequence of probability measures (my),>1 given by

dm,

dl

n
(t) = H Wak (a1 - ak_l) ift e Ial...an-
k=1

Let f: g log, E(ZZ;B Liw,>0yWy). Let J be the largest interval such that —f'(¢)q +
f(q) is defined and positive for all ¢ € J. With probability one, the multifractal formalism
in the sens of [6] or [21] holds for m on — f/(J) and 7, = f on J (cf. [1] and [2] for details).
So in general, 7,(¢q) < Ty, (g) on J except for ¢ = 1 where 7, and 7, always coincide. It is
exactly the same phenomenon as for g and m in Section 1.
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