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GLOSSARY

Dimension An exponent characterizing how some
aspect—mass, number of boxes in a covering, etc.—of
an object scales with the size of the object.

Lacunarity A measure of the distribution of hole sizes
of a fractal. The prefactor in the mass–radius scaling is
one such measure.

Self-affine fractal A shape consisting of smaller copies
of itself, all scaled by affinities, linear transformations
with different contraction ratios in different directions.

Self-similar fractal A shape consisting of smaller copies
of itself, all scaled by similitudes, linear transforma-
tions with the same contraction ratios in every direction.

FRACTALS have a long history: after they became the
object of intensive study in 1975, it became clear that they
had been used worldwide for millenia as decorative pat-
terns. About a century ago, their appearance in pure math-

ematics had two effects. It led to the development of tools
like fractal dimensions, but marked a turn toward abstrac-
tion that contributed to a deep and long divide between
mathematics and physics. Quite independently from fun-
damental mathematical physics as presently defined, frac-
tal geometry arose in equal parts from an awareness of
past mathematics and a concern for practical, mundane
questions long left aside for lack of proper tools.

The mathematical input ran along the lines described
by John von Neumann: “A large part of mathematics
which became useful developed with absolutely no de-
sire to be useful . . . This is true for all science. Successes
were largely due to . . . relying on . . . intellectual elegance.
It was by following this rule that one actually got ahead
in the long run, much better than any strictly utilitarian
course would have permitted . . . The principle of laissez-
faire has led to strange and wonderful results.”

The influence of mundane questions grew to take on
far more importance than was originally expected, and re-
cently revealed itself as illustrating a theme that is common
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in science. Every science started as a way to organize a
large collection of messages our brain receives from our
senses. The difficulty is that most of these messages are
very complex, and a science can take off only after it suc-
ceeds in identifying special cases that allow a workable
first step. For example, acoustics did not take its first step
with chirps or drums but with idealized vibrating strings.
These led to sinusoids and constants or other functions in-
variant under translation in time. For the notion of rough-
ness, no proper measure was available only 20 years ago.
The claim put forward forcibly in Mandelbrot (1982) is
that a workable entry is provided by rough shapes that are
dilation invariant. These are fractals.

Fractal roughness proves to be ubiquitous in the works
of nature and man. Those works of man range from mathe-
matics and the arts to the Internet and the financial markets.
Those works of nature range from the cosmos to carbon
deposits in diesel engines. A sketchy list would be use-
less and a complete list, overwhelming. The reader is re-
ferred to Frame and Mandelbrot (2001) and to a Panorama
mentioned therein, available on the web. This essay is or-
ganized around the mathematics of fractals, and concrete
examples as illustrations of it.

To avoid the need to discuss the same topic twice, math-
ematical complexity is allowed to fluctuate up and down.
The reader who encounters paragraphs of oppressive dif-
ficulty is urged to skip ahead until the difficulty becomes
manageable.

I. SCALE INVARIANCE

A. On Choosing a “Symmetry” Appropriate
to the Study of Roughness

The organization of experimental data into simple theoret-
ical models is one of the central works of every science;
invariances and the associated symmetries are powerful
tools for uncovering these models. The most common in-
variances are those under Euclidean motions: translations,
rotations, reflections. The corresponding ideal physics is
that of uniform or uniformly accelerated motion, uniform
or smoothly varying pressure and density, smooth subman-
ifolds of Euclidean physical or phase space. The geometric
alphabet is Euclidean, the analytical tool is calculus, the
statistics is stationary and Gaussian.

Few aspects of nature or man match these idealizations:
turbulent flows are grossly nonuniform; solid rocks are
conspicuously cracked and porous; in nature and the stock
market, curves are nowhere smooth. One approach to this
discrepancy, successful for many problems, is to treat ob-
served objects and processes as “roughened” versions of
an underlying smooth ideal. The underlying geometry is

Euclidean or locally Euclidean, and observed nature is
written in the language of noisy Euclidean geometry.

Fractal geometry was invented to approach roughness in
a very different way. Under magnification, smooth shapes
are more and more closely approximated by their tangent
spaces. The more they are magnified, the simpler (“bet-
ter”) they look. Over some range of magnifications, look-
ing more closely at a rock or a coastline does not reveal
a simpler picture, but rather more of the same kind of
detail. Fractal geometry is based on this ubiquitous scale
invariance. “A fractal is an object that doesn’t look any
better when you blow it up.” Scale invariance is also called
“symmetry under magnification.”

A manifestation is that fractals are sets (or measures)
that can be broken up into pieces, each of which closely
resembles the whole, except it is smaller. If the pieces scale
isotropically, the shape is called self-similar; if different
scalings are used in different directions, the shape is called
self-affine.

There are deep relations between the geometry of fractal
sets and the renormalization approach to critical phenom-
ena in statistical physics.

B. Examples of Self-Similar Fractals

1. Exact Linear Self-Similarity

A shape S is called exactly (linearly) self-similar if
the whole S splits into the union of parts Si : S =
S1 ∪ S2 ∪ . . . ∪ Sn . The parts satisfy two restrictions: (a)
each part Si is a copy of the whole S scaled by a linear
contraction factor ri , and (b) the intersections between
parts are empty or “small” in the sense of dimension. An-
ticipating Section II, if i �= j , the fractal dimension of the
intersection Si ∩ Sj must be lower than that of S. The
roughness of these sets is characterized by the sim-
ilarity dimension d . In the special equiscaling case
r1 = · · · = rn = r , d = log(n)/ log(1/r ). In general, d is
the solution of the Moran equation

n∑
i=1

rd
i = 1.

More details are given in Section II.
Exactly self-similar fractals can be constructed by sev-

eral elegant mathematical approaches.

a. Initiator and generator. An initiator is a starting
shape; a generator is a juxtaposition of scaled copies of the
initiator. Replacing the smaller copies of the initiator in the
generator with scaled copies of the generator sets in mo-
tion a process whose limit is an exactly self-similar frac-
tal. Stages before reaching the limit are called protofrac-
tals. Each copy is anchored by a fixed point, and one may
have to specify the orientation of each replacement. The
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FIGURE 1 Construction of the Sierpinksi gasket. The initiator
is a filled-in equilateral triangle, and the generator (on the left)
is made of N = 3 triangles, each obtained from the initiator by a
contraction map Ti of reduction ratio r = 1/2. The contractions’
fixed points are the vertices of the initiator. The middle shows the
second stage, replacing each copy of the initiator with a scaled
copy of the generator. On the right is the seventh stage of the
construction.

Sierpinski gasket (Fig. 1) is an example. The eye sponta-
neously splits the whole S into parts. The simplest split
yields N = 3 parts Si , each a copy of the whole reduced by
a similitude of ratio 1/2 and with fixed point at a vertex of
the initiator. In finer subdivisions, Si ∩ Sj is either empty
or a single point, for which d = 0. In this example, but
not always, it can be made empty by simply erasing the
topmost point of every triangle in the construction.

Some of the most familiar fractals were orignally con-
structed to provide instances of curves that exemplify
properties deemed counterintuitive: classical curves may
have one multiple point (like Fig. 8) or a few. To the con-
trary, the Sierpinski gasket (Fig. 2, far left) is a curve with
dense multiple points. The Sierpinski carpet (Fig. 2, mid
left) is a universal curve in the sense that one can embed
in the carpet every plane curve, irrespective of the collec-
tion of its multiple points. The Peano curve [initiator the
diagonal segment from (0, 0) to (1, 1), generator in Fig. 2
mid right] is actually not a curve but a motion. It is plane-
filling: a continuous onto map [0, 1] → [0, 1] × [0, 1].

b. Iterated function systems. Iterated function sys-
tems (IFS) are a formalism for generating exactly self-
similar fractals based on work of Hutchinson (1981) and
Mandelbrot (1982), and popularized by Barnsley (1988).
IFS are the foundation of a substantial industry of im-
age compression. The basis is a (usually) finite collection
{T1, . . . , Tn} of contraction maps Ti : Rn → Rn with con-
traction ratios ri < 1. Each Ti is assigned a probability pi

that serves, at each (discrete) instant of time, to select the
next map to be used. An IFS attractor also can be viewed

FIGURE 2 The Sierpinski gasket, Sierpinski carpet, the Peano
curve generator, and the fourth stage of the Peano curve.

as the limit set of the orbit O+(x0) of any point x0 under
the action of the semigroup generated by {T1, . . . , Tn}.

The formal definition of IFS, which is delicate and
technical, proceeds as follows. Denoting by K the set
of nonempty compact subsets of Rn and by h the Haus-
dorff metric on K [h(A, B) = inf{δ: A ⊂ Bδ and B ⊂ Aδ},
where Aδ = {x ∈ Rn: d(x, y) ≤ δ for some y ∈ A} is the δ-
thickening of A, and d is the Euclidean metric], the Ti

together define a transformation T :K→K by T (A) =⋃n
i=1{Ti (x): x ∈ A}, a contraction in the Hausdorff met-

ric with contraction ratio r = max{r1, . . . , rn}. Because
(K, h) is complete, the contraction mapping principle
guarantees there is a unique fixed point C of T . This fixed
point is the attractor of the IFS {T1, . . . , Tn}. Moreover, for
any K ∈K, the sequence K , T (K ), T 2(K ), . . . converges
to C in the sense that limn → ∞ h(T n(K ), C) = 0.

The IFS inverse problem is, for a given compact set A
and given tolerance δ > 0, to find a set of transformations
{T1, . . . , Tn} with attractor C satisfying h(A, C) < δ. The
search for efficient algorithms to solve the inverse prob-
lem is the heart of fractal image compression. Detailed
discussions can be found in Barnsley and Hurd (1993)
and Fischer (1995).

2. Exact Nonlinear Self-Similarity

A broader class of fractals is produced if the decomposi-
tion of S into the union S = S1 ∪ S2 ∪ . . . ∪ Sn allows the
Si to be the images of S under nonlinear transformations.

a. Quadratic Julia sets. For fixed complex number
c, the “quadratic orbit” of the starting complex number z
is a sequence of numbers that begins with fc(z) = z2 + c,
then f 2

c (z) = ( fc(z))2 + c and continues by following the
rule f n

c (z) = fc( f n−1
c (z)). The filled-in (quadratic) Julia

set consists of the starting points that do not iter-
ate to infinity, formally, the points {z: f n

c (z) remains
bounded as n → ∞}. The (quadratic) Julia set Jc is the
boundary of the filled-in Julia set. Figure 3 shows the
Julia set Jc for c = 0.4 + 0 · i and the filled-in Julia set
for c = −0.544 + 0.576 · i . The latter has an attracting
5-cycle, the black region is the basin of attraction of the

FIGURE 3 The Julia set of z 2 + 0.4 (left) and the filled-in Julia
set for z 2 − 0.544 + 0.576 · i (right).
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5-cycle, and the Julia set is the boundary of the black
region. Certainly, Jc is invariant under fc and under the
inverses of fc, f −1

c+ (z) = √
z − c and f −1

c− (z) = −√
z − c.

Polynomial functions allow several equivalent character-
izations: Jc is the closure of the set of repelling periodic
points of fc(z) and Jc is the attractor of the nonlinear IFS
{ f −1

c+ , f −1
c− }.

Much is known about Julia sets of quadratic functions.
For example, McMullen proved that at a point whose ro-
tation number has periodic continued-fraction expansion,
the J set is asymptotically self-similar about the critical
point.

The J sets are defined for functions more general
than polynomials. Visually striking and technically in-
teresting examples correspond to the Newton function
N f (z) = z − f (z)/ f ′(z) for polynomial families f (z), or
entire functions like λ sin z, λ cos z, or λ exp z (see Sec-
tion VIII.B). Discussions can be found in Blanchard
(1994), Curry et al. (1983), Devaney (1994), Keen (1994),
and Peitgen (1989).

b. The Mandelbrot set. The quadratic orbit f n
c (z)

always converges to infinity for large enough values of z.
Mandelbrot attempted a computer study of the set M0 of
those values of c for which the orbit does not converge to
infinity, but to a stable cycle. This approach having proved
unrewarding, he moved on to a set that promised an easier
calculation and proved spectacular. Julia and Fatou, build-
ing on fundamental work of Montel, had shown that the
Julia set Jc of fc(z) = z2 + c must be either connected or
totally disconnected. Moreover, Jc is connected if, and
only if, the orbit O+(0) of the critical point z = 0 re-
mains bounded. The set M defined by {c: f n

c (0) remains
bounded} is now called the Mandelbrot set (see the left
side of Fig. 4). Mandelbrot (1980) performed a computer
investigation of its structure and reported several observa-
tions. As is now well known, small copies of the M set are
infinitely numerous and dense in its boundary. The right
side of Fig. 4 shows one such small copy, a nonlinearly
distorted copy of the whole set. Although the small copy
on the right side of Fig. 4 appears to be an isolated “island,”
Mandelbrot conjectured and Douady and Hubbard (1984)
proved that the M set is connected. Sharpening an obser-

FIGURE 4 Left: The Mandelbrot set. Right: A detail of the Man-
delbrot set showing a small copy of the whole. Note the nonlinear
relation between the whole and the copy.

vation by Mandelbrot, Tan Lei (1984) proved the conver-
gence of appropriate magnifications of Julia sets and the M
set at certain points named after Misiurewicz. Shishikura
(1994) proved Mandelbrot’s (1985) and Milnor’s (1989)
conjecture that the boundary of the M set has Hausdorff
dimension 2. Lyubich proved that the boundary of the M
set is asymptotically self-similar about the Feigenbaum
point.

Mandelbrot’s first conjecture, that the interior of the M
set consists entirely of components (called hyperbolic) for
which there is a stable cycle, remains unproved in general,
though McMullen (1994) proved it for all such compo-
nents that intersect the real axis. Mandelbrot’s notion that
M may be the closure of M0 is equivalent to the assertion
that the M set is locally connected. Despite intense ef-
forts, that assertion remains a conjecture, though Yoccoz
and others have made progress.

Other developments include the theory of quadratic-like
maps (Douady and Hubbard, 1985), implying the univer-
sality and ubiquity of the M set. This result was presaged
by the discovery (Curry et al., 1983) of a Mandelbrot set
in the parameter space of Newton’s method for a family
of cubic polynomials.

The recent book by Tan Lei (2000) surveys current re-
sults and attests to the vitality of this field.

c. Circle inversion limit sets. Inversion IC in a cir-
cle C with center O and radius r transforms a point P
into the point P ′ lying on the ray OP and with d(O, P) ·
d(O, P ′) = r2. This is the orientation-reversing involution
defined on R2 ∪ {∞} by P → IC (P) = P ′. Inversion in C
leaves C fixed, and interchanges the interior and exterior
of C . It contracts the “outer” component not containing
O , but the contraction ratio is not bounded by any r < 1.

Poincaré generalized from inversion in one circle to a
collection of more than one inversion. As an example,
consider a collection of circles C1, . . . , CN each of which
is external to all the others. That is, for all j �= i , the disks
bounded by Ci and C j have disjoint interiors. The limit set
	(C1, . . . , CN ) of inversion in these circles is the set of
limit points of the orbit O+(P) of any point P , external to
C1, . . . , CN , under the group generated by IC1 , . . . , ICN .
Equivalently, it is the set left invariant by every one of the
inversions IC1 , . . . , ICN .

The limit set 	 is nearly always fractal but the nonlin-
earity of inversion guarantees that 	 is nonlinearly self-
similar. An example is shown in Fig. 5: the part of the limit
set inside C1 is easily seen to be the transform by I1 of the
part of the limit set inside C2, C3, C4, and C5.

How can one draw the limit set 	 when the arrangement
of the circles C1, . . . , CN is more involved? Poincaré’s
original algorithm converges extraordinarily slowly. The
first alternative algorithm was advanced in Mandelbrot
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FIGURE 5 Left: The limit set generated by inversion in the five
circles C1, . . . , C5. Right: A magnification of the limit set.

(1982, Chapter 18); it is intuitive and the large-scale fea-
tures of 	 appear very rapidly, followed by increasingly
fine features down to any level a computer’s memory can
support.

d. Kleinian group limit sets. A Kleinian group
(Beardon, 1983; Maskit, 1988) is a discrete group of
Möbius transformations

z → az + b

cz + d

acting on the Riemann sphere Ĉ, the sphere at infinity
of hyperbolic 3-space H3. The isometries of H3 can be
represented by complex matrices[

a b

c d

]
.

[More precisely, by their equivalence classes in
P SL2(C).] Sullivan’s side-by-side dictionary (Sullivan,
1985) between Kleinian groups and iterates of rational
maps is another deep mathematical realm informed,
at least in part, by fractal geometry. Thurston’s “ge-
ometrization program” for 3-manifolds (Thurston, 1997)
involves giving many 3-manifolds hyperbolic structures
by viewing them as quotients of H3 by the action of a
Kleinian group G (Epstein, 1986). The corresponding
action of G on Ĉ determines the limit set 	(G), defined
as the intersection of all nonempty G-invariant subsets
of Ĉ. For many G, the limit set is a fractal. An example
gives the flavor of typical results: the limit set of a finitely
generated Kleinian group is either totally disconnected, a
circle, or has Hausdorff dimension greater than 1 (Bishop
and Jones, 1997). The Hausdorff dimension of the limit
set has been studied by Beardon, Bishop, Bowen, Canary,
Jones, Keen, Mantica, Maskit, McMullen, Mumford,
Parker, Patterson, Sullivan, Tricot, Tukia, and many
others. Poincaré exponents, eigenvalues of the Laplacian,
and entropy of geodesic flows are among the tools used.

Figure 5 brings forth a relation between some limit sets
of inversions or Kleinian groups and Apollonian packings

(Keen et al., 1993). In fact, the limit set of the Kleinian
groups that are in the Maskit embedding (Keen and Series,
1993) of the Teichmüller space of any finite-type Riemann
surface are Apollonian packings. These correspond to hy-
perbolic 3-manifolds having totally geodesic boundaries.
McShane et al. (1994) used automatic group theory to
produce efficient pictures of these limit sets, and Parker
(1995) showed that in many cases the Hausdorff dimen-
sion of the limit set equals the circle packing exponent,
easily estimated as the slope of the log–log plot of the
number of circles of radius ≥r (y axis) versus r (x axis).

Limit sets of Kleinian group actions are an excellent
example of a deep, subtle, and very active area of pure
mathematics in which fractals play a central role.

3. Statistical Self-Similarity

A tree’s branches are not exact shrunken copies of that
tree, inlets in a bay are not exact shrunken copies of that
bay, nor is each cloud made up of exact smaller copies
of that cloud. To justify the role of fractal geometry as
a geometry of nature, one must take a step beyond ex-
act self-similarity (linear or otherwise). Some element of
randomness appears to be present in many natural objects
and processes. To accommodate this, the notions of self-
similarity and self-affinity are made statistical.

a. Wiener brownian motion: its graphs and trails.
The first example is classical. It is one-dimensional
Brownian motion, the random process X (t) defined by
these properties: (1) with probability 1, X (0) = 0 and X (t)
is continuous, and (2) the increments X (t + 
t)− X (t) of
X (t) are Gaussian with mean 0 and variance 
t . That is,

Pr{X (t + 
t) − X (t) ≤ x} = 1√
2π
t

×
∫ x

−∞
exp

(−u2

2
t

)
du.

An immediate consequence is independence of incre-
ments over disjoint intervals. A fundamental property of
Brownian motion is statistical self-affinity: for all s > 0,

Pr{X (s(t + 
t)) − X (st) ≤ √
sx} = Pr{X (t + 
t)

− X (t) ≤ x}.
That is, rescaling t by a factor of s, and of x by a fac-
tor of

√
s, leaves the distribution unchanged. This correct

rescaling is shown on the left panel of Fig. 6: t (on the
horizontal axis) is scaled by 4, x (on the vertical axis) is
scaled by 2 = 41/2. Note that this magnification has about
the same degree of roughness as the full picture. In the
center panel, t is scaled by 4, x by 4/3; the magnification
is flatter than the original. In the right panel, both t and
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FIGURE 6 Left panel: Correct rescaling illustrating the self-
affinity of Brownian motion. Center and right panels: Two incorrect
rescalings.

x are scaled by 4; the magnification is steeper than the
original.

A sequence of increments of Brownian motion is called
Gaussian white noise. Even casual inspection of the graph
reveals some fundamental features. The width of an old
pen-plotter line being equal to the spacing between suc-
cessive difference values, the bulk of the difference plot
merges into a “band” with the following properties (see
Fig. 7):

� The band’s width is approximately constant.
� The values beyond that band stay close to it (this is due

to the fact that the Gaussian has “short tails”).
� The values beyond that band do not cluster.

Positioning E independent one-dimensional Brownian
motions along E coordinate axes gives a higher dimen-
sional Brownian motion: B(t) = {X1(t), . . . , X E (t)}. Plot-
ted as a curve in E-dimensional space, the collection of
points that B(t) visits between t = 0 and t = 1 defines a
Brownian trail.

When E > 2, this is an example of a statistically self-
similar fractal. To split the Brownian trail into N reduced-
scale parts, pick N − 1 arbitrary instants tn with 0 = t0 <

t1 < · · · < tN−1 < tN = 1. The Brownian trail for 0 ≤ t ≤ 1
splits into N subtrails Bn for the interval tn−1 < t < tn .
The parts Bn follow the same statistical distribution as
the whole, after the size is expanded by (tn − tn−1)−1/2 in
every direction.

Due to the definition of self-similarity, this example
reveals a pesky complication: for i �= j, Bi ∩ B j must be
of dimension less than B. This is indeed the case if E > 2,
but not in the plane E = 2. However, the overall idea can be
illustrated for E = 2. The right side of Fig. 8 shows B1(t)
for 0 ≤ t ≤ 1/4, expanded by a factor of 2 = (1/4 − 0)−1/2

and with additional points interpolated so the part and
the whole exhibit about the same number of turns. The
details for E = 2 are unexpectedly complex, as shown in
Mandelbrot (2001b, Chapter 3).

The dimensions (see Sections II.B and II.E) of some
Brownian constructions are well-known, at least in most
cases. For example, with probability 1:

FIGURE 7 Plot of 4000 successive Brownian increments.

FIGURE 8 A Brownian trail. Right: The first quarter of the left
trail, magnified and with additional turns interpolated so the left
and right pictures have about the same number of turns.

� For E ≥ 2 a Brownian trail B: [0, 1] → RE has
Hausdorff and box dimensions dH = dbox = 2,
respectively.

� The graph of one-dimensional Brownian motion
B: [0, 1] → R has dH = dbox = 3/2.

Some related constructions have been more resistant
to theoretical analysis. Mandelbrot’s planar Brownian
cluster is the graph of the complex B(t) constrained
to satisfy B(0) = B(1). It can be constructed by lin-
early detrending the x- and y-coordinate functions:
(X (t) − t X (1), Y (t) − tY (1)). See Fig. 9. The cluster is
known to have dimension 2. Visual inspection supported
by computer experiments led to the 4/3 conjecture, which
asserts that the boundary of the cluster has dimension
4/3 (Mandelbrot, 1982, p. 243). This has been proved
by Lawler et al. (2000).

Brownian motion is the unique stationary random pro-
cess with increments independent over disjoint intervals
and with finite variance. For many applications, these con-
ditions are too restrictive, drawing attention to other ran-
dom processes that retain scaling but abandon either in-
dependent increments or finite variance.

b. Fractional Brownian motion. For fixed 0 < H <

1, fractional Brownian motion (FBM) of exponent H is
a random process X (t) with increments X (t + 
t) − X (t)
following the Gaussian distribution with mean 0 and stan-
dard deviation (
t)H . Statistical self-affinity is straight-
forward: for all s > 0

Pr{X (s(t + 
t)) − X (st) ≤ s H x}
= Pr{X (t + 
t) − X (t) ≤ x}.

The correlation is the expected value of the product of
successive increments. It equals

FIGURE 9 A Brownian cluster.
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FIGURE 10 Top: Fractional Brownian motion simulations with
H = 0.25, H = 0.5, and H = 0.75. Bottom: Difference plots X(t +
1) − X(t) of the graphs above.

E((X (t) − X (0)) · (X (t + h) − X (t)))

= 1
2 ((t + h)2H − t2H − h2H ).

If H = 1/2, this correlation vanishes and the increments
are independent. In fact, FBM reduces to Brownian mo-
tion. If H > 1/2, the correlation is positive, so the incre-
ments tend to have the same sign. This is persistent FBM.
If H < 1/2, the correlation is negative, so the increments
tend to have opposite signs. This is antipersistent FBM.
See Fig. 10. The exponent determines the dimension of
the graph of FBM: with probability 1, dH = dbox = 2 − H .
Notice that for H > 1/2, the central band of the difference
plot moves up and down, a sign of long-range correlation,
but the outliers still are small. Figure 11 shows the trails
of these three flavors of FBM. FBM is the main topic of
Mandelbrot (2001c).

c. Lévy stable processes. While FBM introduces
correlations, its increments remain Gaussian and so have
small outliers. The Gaussian distribution is characterized
by its first two moments (mean and variance), but some
natural phenomena appear to have distributions for which
these are not useful indicators. For example, at the critical
point of percolation there are clusters of all sizes and the
expected cluster size diverges.

Paul Lévy studied random walks for which the jump dis-
tributions follow the power law Pr{X > x} ≈ x−α . There
is a geometrical approach for generating examples of Lévy
processes.

The unit step function ξ (t) is defined by

ξ (t) =
{

0 for x < 0

1 for x ≥ 0

FIGURE 11 Top: Fractional Brownian motion simulations with
H = 0.25, H = 0.5, and H = 0.75. Bottom: Difference plots X(t +
1) − X(t) of the graphs above.

FIGURE 12 Lévy flight on the line. Left: the graph as a function
of time. Right, the increments.

and a (one-dimensional) Lévy stable process is defined as
a sum

f (t) =
∞∑

k=1

λkξ (t − tk),

where the pulse times tn and amplitudes λn are cho-
sen according to the following Lévy measure: given t
and λ, the probability of choosing (ti , λi ) in the rectan-
gle t < ti < t + dt, λ < λi < λ + dλ is Cλ−α − 1 dλ dt . Fig-
ure 12 shows the graph of a Lévy process or flight, and a
graph of its increments.

Comparing Figs. 7, 10, and 12 illustrates the power of
the increment plot for revealing both global correlations
(FBM) and long tails (Lévy processes).

The effect of large excursions in Lévy processess is
more visible in the plane. See Fig. 13. These Lévy flights
were used in Mandelbrot (1982, Chapter 32) to mimic the
statistical properties of galaxy distributions.

Using fractional Brownian motion and Lévy processes,
Mandelbrot (in 1965 and 1963) improved upon Bache-
lier’s Brownian model of the stock market. The former
corrects the independence of Brownian motion, the lat-
ter corrects its short tails. The original and corrected pro-
cesses in the preceding sentence are statistically self-affine
random fractal processes. This demonstrates the power
of invariances in financial modeling; see Mandelbrot
(1997a,b).

d. Self-affine cartoons with mild to wild random-
ness. Many natural processes exhibit long tails or global
dependence or both, so it was a pleasant surprise that both
can be incorporated in an elegant family of simple car-
toons. (Mandelbrot, 1997a, Chapter 6; 1999, Chapter N1;
2001a). Like for self-similar curves (Section I.B.1.a), the
basic construction of the cartoon involves an initiator and a

FIGURE 13 Left: Trail of the Lévy flight in the plane. Right: The
Lévy dust formed by the turning points.
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FIGURE 14 The initiator (left), generator (middle), and first gen-
eration (right) of the Brownian cartoon.

generator. The process used to generate the graph consists
in replacing each copy of the initiator with an appropriately
rescaled copy of the generator. For a Brownian cartoon,
the initiator can be the diagonal of the unit square, and the
generator, the broken line with vertices (0, 0), (4/9, 2/3),
(5/9, 1/3), and (1, 1). Pictured in Fig. 14 are the initiator
(left), generator (middle), and first iteration of the process
(right).

To get an appreciation for how quickly the local rough-
ness of these pictures increases, the left side of Fig. 15
shows the sixth iterate of the process.

Self-affinity is built in because each piece is an appro-
priately scaled version of the whole. In Fig. 14, the scal-
ing ratios have been selected to match the “square root”
property of Brownian motion: for each segment of the
generator we have |
xi | = (
ti )1/2.

More generally, a cartoon is called unifractal if there
is a constant H with |
xi | = (
ti )H for each generator
segment, where 0 < H < 1. If different H are needed for
different segments, the cartoon is multifractal.

The left side of Figure 15 is too symmetric to mimic
any real data, but this problem is palliated by shuffling the
order in which the three pieces of the generator are put
into each scaled copy. The right side of Fig. 15 shows a
Brownian cartoon randomized in this way.

Figure 16 illustrates how the statistical properties of
the increments can be modified by adjusting the genera-
tor in a symmetrical fashion. Keeping fixed the endpoints
(0, 0) and (1, 1), the middle turning points are changed
into (a, 2/3) and (1 − a, 1/3) for 0 < a ≤ 1/2.

e. Percolation clusters (Stauffer and Aharony,
1992). Given a square lattice of side length L and a
number p ∈ [0, 1], assign a random number x ∈ [0, 1] to
each lattice cell and fill the cell if x ≤ p. A cluster is a
maximal collection of filled cells, connected by sharing
common edges. Three examples are shown in Fig. 17. A

FIGURE 15 Left: The sixth iterate of the process of Fig. 14. Right:
A sixth iterate of a randomized Brownian cartoon.

spanning cluster connects opposite sides of the lattice.
For large L there is a critical probability or percolation
threshold pc; spanning clusters do not arise for p < pc.
Numerical experiments suggest pc ≈ 0.59275. In Fig. 17,
p = 0.4, 0.6, and 0.8. Every lattice has its own pc.

At p = pc the masses of the spanning clusters scale
with the lattice size L as Ld , independently of the lattices.
Experiment yields d = 1.89 ± 0.03, and theory yields
d = 93/49. This d is the mass dimension of Section II.C.
In addition, spanning clusters have holes of all sizes; they
are statistically self-similar fractals.

Many fractals are defined as part of a percolation clus-
ter. The backbone is the subset of the spanning cluster
that remains after removing all parts that can be separated
from both spanned sides by removing a single filled cell
from the spanning cluster. Numerical estimates suggest
the backbone has dimension 1.61. The backbone is the
path followed by a fluid diffusing through the lattice.

The hull of a spanning cluster is its boundary. It was
observed by R. F. Voss in 1984 and proven by B. Duplantier
that the hull’s dimension is 7/4.

A more demanding definition of the boundary yields the
perimeter. It was observed by T. Grossman and proven by
B. Duplantier that the perimeter’s dimension is 4/3.

Sapoval et al. (1985) examined discrete diffusion and
showed that it involves a fractal diffusion front that can
be modeled by the hull and the perimeter of a percolation
cluster.

f. Diffusion-limited aggregation (DLA; Vicsek,
1992). DLA was proposed by Witten and Sander (1981,
1983) to simulate the aggregates that carbon particles
form in a diesel engine. On a grid of square cells, a cartoon
of DLA begins by occupying the center of the grid with a
“seed particle.” Next, place a particle in a square selected
at random on the edge of a large circle centered on the seed
square and let it perform a simple random walk. With each
tick of the clock, with equal probabilities it will move to an
adjacent square, left, right, above, or below. If the moving
particle wanders too far from the seed, it falls off the edge
of the grid and another wandering particle is started at a
randomly chosen edge point. When a wandering particle
reaches one of the four squares adjacent to the seed, it
sticks to form a cluster of two particles, and another mov-
ing particle is released. When a moving particle reaches a
square adjacent to the cluster, it sticks there. Continuing
in this way builds an arbitrarily large object called a
diffusion-limited aggregate (DLA) because the growth of
the cluster is governed by the particles’ diffusing across
the grid. Figure 18 shows a moderate-size DLA cluster.

Early computer experiments on clusters of up to the 104

particles showed the mass M(r ) of the part of the cluster
a distance r from the seed point scales as M(r ) ≈ k · rd ,



P1: GLQ Final

Encyclopedia of Physical Science and Technology EN006H-259 June 28, 2001 20:1

Fractals 193

FIGURE 16 Generators, cartoons and difference graphs for symmetric cartoons with turning points (a, 2/3) and
(1 − a, 1/3), for a = 0.333, 0.389, 0.444, 0.456, and 0.467. The same random number seed is used in all graphs.

with d ≈ 1.71 for clusters in the plane and d ≈ 2.5 for
clusters in space. This exponent d is the mass dimen-
sion of the cluster. (See Sections II.C and V.) These val-
ues match measured scalings of physical objects moder-
ately, but not terribly well. A careful examination of much
larger clusters revealed discrepancies that added in due
time to a very complex picture of DLA. Mandelbrot et al.
(1995) investigated clusters in the 107 range; careful mea-
surement reveals an additional dimension of 1.65 ± 0.01.
This suggests the clusters become more compact as they
grow. Also, as the cluster grows, more arms develop and
the largest gaps decrease in size; i.e., the lacunarity de-
screases. (See Section VI.)

II. THE GENERIC NOTION OF FRACTAL
DIMENSION AND A FEW SPECIFIC
IMPLEMENTATIONS

The first, but certainly not the last, step in quantifying
fractals is the computation of a dimension. The notion of
Euclidean dimension has many aspects and therefore ex-
tends in several fashions. The extensions are distinct in the

FIGURE 17 Percolation lattices well below, near, and well above
the percolation threshold.

most general cases but coincide for exactly self-similar
fractals. Many other dimensions cannot be mentioned
here.

A more general approach to quantifying degrees of
roughness is found in the article on Multifractals.

A. Similarity Dimension

The definition of similarity dimension is rooted in the fact
that the unit cube in D-dimensional Euclidean space is
self-similar: for any positive integer b the cube can be de-
composed into N = bD cubes, each scaled by the similar-
ity ratio r = 1/b, and overlapping at most along (D − 1)-
dimensional cubes.

The equiscaling or isoscaling case. Provided the
pieces do not overlap significantly, the power-law relation
N = (1/r )D between the number N and scaling factor r of
the pieces generalizes to all exactly self-similar sets with
all pieces scaled by the factor r . The similarity dimension
dsim is

dsim = log(N )

log(1/r )
.

FIGURE 18 A moderate-size DLA cluster.
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The pluriscaling case. More generally, for self-similar
sets where each piece is scaled by a possibly different
factor ri , the similarity dimension is the unique positive
root d of the Moran equation

N∑
i=1

rd
i = 1.

The relation 0 ≤ dsim ≤ E . If the fractal is a subset of
E-dimensional Euclidean space, E is called the embed-
ding dimension.

So long as the overlap of the parts is not too great
(technically, under the open set condition), we have
dsim ≤ E . If at least two of the ri are positive, we have
dsim > 0. However, Section III.F shows that some circum-
stances introduce a latent dimension d, related indirectly
to the similarity dimension, and that can satisfy d < 0
or d > E .

B. Box Dimension

The similarity dimension is meaningful only for exactly
self-similar sets. For more general sets, including exper-
imental data, it is often replaced by the box dimension.
For any bounded (nonempty) set A in E-dimensional
Euclidean space, and for any δ > 0, a δ-cover of A is a
collection of sets of diameter δ whose union contains A.
Denote by Nδ(A) the smallest number of sets in a δ-cover
of A. Then the box dimension dbox of A is

dbox = lim
δ → 0

log(Nδ(A))

log(1/δ)

when the limit exists. When the limit does not exist, the
replacement of lim with lim sup and lim inf defines the
upper and lower box dimensions:

dbox = lim sup
δ→0

log(Nδ(A))

log(1/δ)
,

dbox = lim inf
δ→0

log(Nδ(A))

log(1/δ)
.

The box dimension can be thought of as measuring how
well a set can be covered with small boxes of equal size,
because the limit (or lim sup and lim inf) remain un-
changed if Nδ(A) is replaced by the smallest number of
E-dimensional cubes of side δ needed to cover A, or even
the number of cubes of a δ lattice that intersect A.

Section V describes methods of measuring the box di-
mension for physical datasets.

C. Mass Dimension

The mass M(r ) of a d-dimensional Euclidean ball of con-
stant density ρ and radius r is given by

M(r ) = ρ · V (d) · rd

with V (d) = (
�

(
1
2

)d)/
�

(
d + 1

2

)
,

where V (d) is the volume of the d-dimensional unit
sphere. That is, for constant-density Euclidean objects,
the ordinary dimension—among many other roles—is the
exponent relating mass to size. This role motivated the
definition of mass dimension for a fractal. The definition
of mass is delicate. For example, the mass of a Sierpin-
ski gasket cannot be defined by starting with a triangle of
uniform density and removing middle triangles; this pro-
cess would converge to a mass reduced to 0. One must,
instead, proceed as on the left side of Fig. 1: take as ini-
tiator a triangle of mass 1, and as generator three triangles
each scaled by 1/2 and of mass 1/3. Moreover, two very
new facts come up.

Firstly, the = sign in the formula for M(r ) must be re-
placed by ≈. That is, M(r ) fluctuates around a multiple
of rd . For example, as mentioned in Sections I.B.3.e and
I.B.3.f, the masses of spanning percolation clusters and
diffusion-limited aggregates scale as a power-law func-
tion of size. Consequently, the exponent in the relation
M(r ) ≈ k · rdmass is called the mass dimension.

Second, in the Euclidean case the center is arbitrary
but in the fractal case it must belong to the set un-
der consideration. As an example, Fig. 19 illustrates
attempts to measure the mass dimension of the Sier-
pinski gasket. Suppose we take circles centered at the
lower left vertex of the initiator, and having radii 1/2,
1/4, 1/8, . . . . We obtain M(1/2i ) = 1/3i = (1/2i )d , where
dmass = log 3/ log 2. See the left side of Fig. 19. That is,
the mass dimension agrees with the similarity dimension.

On the other hand, if the circle’s center is randomly
selected in the interior of the initiator, the passage to the
limit r → 0 almost surely eventually stops with circles
bounding no part of the gasket. See the middle of Fig. 19.

Taking a family of circles with center c a point of the
gasket, the mass–radius relation becomes M(r ) = k(r, c) ·
rd , where the prefactor k(r, c) fluctuates and depends on
both r and c. See the right side of Fig. 19. Even in this
case, the exponent is the mass dimension. The prefactor
is no longer a constant density, but a random variable,
depending on the choice of the origin.

FIGURE 19 Attempts at measuring the mass dimension of a
Sierpinski gasket using three families of circles.
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Section V describes methods of measuring the mass
dimension for physical datasets.

D. Minkowski–Bouligand Dimension

Given a set A ⊂ RE and δ > 0, the Minkowski sausage of
A, also called the δ-thickening or δ-neighborhood of A,
is defined as Aδ = {x ∈ RE: d(x, y) ≤ δ for some y ∈ A}.
(See Section I.B.b.) In the Euclidean case when A is a
smooth m-dimensional manifold imbedded in RE , one has
vol(Aδ) ∼ 	 · δE−m . That is, the E-dimensional volume
of Aδ scales as δ to the codimension of A. This concept
extends to fractal sets A: if the limit exists,

E − lim
δ→0

log(vol(Aδ))

log(δ)

defines the Minkowski–Bouligand dimension, dMB(A) (see
Mandelbrot, 1982, p. 358). In fact, it is not difficult to see
that dMB(A) = dbox(A). If the limit does not exist, lim sup
gives dbox(A) and lim inf gives dbox(A).

In the privileged case when the limit

lim
δ→0

vol(Aδ)

δE−m

exists, it generalizes the notion of Minkowski content for
smooth manifolds A. Section VI will use this prefactor to
measure lacunarity.

E. Hausdorff–Besicovitch Dimension

For a set A in Euclidean space, given s ≥ 0 and δ > 0,
consider the quantity

Hs
δ(A) = inf

{ ∑
i

|Ui |s: {Ui } is a δ-cover of A

}
.

A decrease of δ reduces the collection of δ-covers of
A, therefore Hs

δ(A) increases as δ → 0 and Hs(A) =
limδ→0 Hs

δ(A) exists. This limit defines the s-dimensional
Hausdorff measure of A. For t > s, Ht

δ(A) ≤ δt−sHs
δ(A).

It follows that a unique number dH has the property that

s < dH implies Hs(A) = ∞
and

s > dH implies Hs(A) = 0.

That is,

dH(A) = inf{s:Hs(A) = 0} = sup{s:Hs(A) = ∞}.
This quantity dH is the Hausdorff–Besicovitch dimension
of A. It is of substantial theoretical significance, but in
most cases is quite challenging to compute, even though it
suffices to use coverings by disks. An upper bound often is
relatively easy to obtain, but the lower bound can be much

more difficult because the inf is taken over the collection of
all δ-covers. Because of the inf that enters in its definition,
the Hausdorff–Besicovitch dimension cannot be measured
for any physical object.

Note: If A can be covered by Nδ(A) sets of diame-
ter at most δ, then Hs

δ(A) ≤ Nδ(A) · δs . From this it fol-
lows dH(A) ≤ dbox(A), so dH(A) ≤ dbox(A) if dbox(A) ex-
ists. This inequality can be strict. For example, if A is
any countable set, dH(A) = 0 and yet dbox(rationals in
[0, 1]) = 1.

F. Packing Dimension

Hausdorff dimension measures the efficiency of covering
a set by disks of varying radius. Tricot (1982) introduced
packing dimension to measure the efficiency of packing
a set with disjoint disks of varying radius. Specifically,
for δ > 0 a δ-packing of A is a countable collection of
disjoint disks {Bi } with radii ri < δ and with centers in A.
In analogy with Hausdorff measure, define

P s
δ (A) = sup

{ ∑
i

|Bi |s: {Bi } is a δ-packing of A

}
.

As δ decreases, so does the collection of δ-packings of A.
Thus P s

δ (A) decreases as δ decreases and the limit

P s
0(A) = lim

δ→0
P s

δ (A)

exists. A technical complication requires an additional
step. The s-dimensional packing measure of A is defined
as

P s(A) = inf

{ ∑
i

P s
0(Ai ): A ⊂

∞⋃
i=1

Ai

}
.

Then the packing dimension dpack(A) is

dpack(A) = inf{s:P s(A) = 0} = sup{s:P s(A) = ∞}.
Packing, Hausdorff, and box dimensions are related:

dH(A) ≤ dpack(A) ≤ dbox(A).

For appropriate A, each inequality is strict.

III. ALGEBRA OF DIMENSIONS
AND LATENT DIMENSIONS

The dimensions of ordinary Euclidean sets obey sev-
eral rules of thumb that are widely used, though rarely
stated explicitly. For example, the union of two sets of
dimension d and d ′ usually has dimension max{d, d ′}.
The projection of a set of dimension d to a set of di-
mension d ′ usually gives a set of dimension min{d, d ′}.
Also, for Cartesian products, the dimensions usually add:
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dim(A × B) = dim(A) + dim(B). For the intersection of
subsets A and B of RE , it is the codimensions that usually
add: E − dim(A ∩ B) = (E − dim(A)) + (E − dim(B)),
but only so long as the sum of the codimensions is non-
negative. If this sum is negative, the intersection is empty.
Mandelbrot (1984, Part II) generalized those rules to frac-
tals and (see Section III.G) interpreted negative dimen-
sions as measures of “degree of emptiness.”

For simplicity, we restrict our attention to generaling
these properties to the Hausdorff and box dimensions of
fractals.

A. Dimension of Unions and Subsets

Simple applications of the definition of Hausdorff dimen-
sion give

A ⊆ B implies dH(A) ≤ dH(B)

and

dH(A ∪ B) = max{dH(A), dH(B)}.
Replacing max with sup, this property holds for countable
collections of sets. The subset and finite union properties
hold for box dimension, but the countable union property
fails.

B. Product and Sums of Dimensions

For all subsets A and B of Euclidean space,
dH(A × B) ≥ dH(A) + dH(B). Equality holds if one
of the sets is sufficiently regular. For example, if dH(A) =
dH(A), then dH(A × B) = dH(A) + dH(B). Equality does
not always hold: Besicovitch and Moran (1945) give an
example of subsets A and B of R with dH(A) = dH(B) = 0,
yet dH(A × B) = 1.

For upper box dimensions, the inequality is reversed:
dbox(A × B) ≤ dbox(A) + dbox(B).

C. Projection

Denote by projP (A) the projection of a set A ⊂ R3 to a
plane P ⊂ R3 through the origin. If A is a one-dimensional
Euclidean object, then for almost all choices of the plane
P , projP(A) is one-dimensional. If A is a two- or three-
dimensional Euclidean object, then for almost all choices
of the plane P , projP (A) is two-dimensional of positive
area. That is, dim(projP (A)) = min{dim(A), dim(P)}.

The analogous properties hold for fractal sets A. If
dH(A) < 2, then for almost all choices of the plane
P , dH(projP (A)) = dH(A). If dH(A) ≥ 2, then for al-
most all choices of the plane P , dH(projP (A)) = 2 and
projP (A) has positive area. So again, dH(projP (A)) =
min{dH(A), dH(P)}.

The obvious generalization holds for fractals A ⊂ RE

and projections to k-dimensional hyperplanes through the
origin.

Projections of fractals can be very complicated. There
are fractal sets A ⊂ R3 with the surprising property that
for almost every plane P through the origin, the projection
projP (A) is any prescribed shape, to within a set of area 0.
Consequently, as Falconer (1987) points out, in principle
we could build a fractal digital sundial.

D. Subordination and Products of Dimension

We have already seen operations realizing the sum, max,
and min of dimensions, and in the next subsection we shall
examine the sum of codimensions. For certain types of
fractals, multiplication of dimensions is achieved through
“subordination,” a process introduced in Bochner (1955)
and elaborated in Mandelbrot (1982). Examples are con-
structed easily from the Koch curve generator (Fig. 20a).
The initiator (the unit interval) is unchanged, but the new
generator is a subset of the original generator. Figure 20
shows three examples.

In Fig. 20, generator (b) gives a fractal dust (B) of
dimension log 3/log 3 = 1. Generator (c) gives the stan-
dard Cantor dust (C) of dimension log 2/log 3. Generator
(d) gives a fractal dust (D) also of dimension log 2/log 3.
Thinking of the Koch curve K as the graph of a func-
tion f : [0, 1] → K ⊂ R2, the fractal (B) can be obtained
by restricting f to the Cantor set with initiator [0, 1] and
generator the intervals [0, 1/4], [1/4, 1/2], and [1/2, 3/4].
In this case, the subordinand is a Koch curve, the subor-
dinator is a Cantor set, and the subordinate is the fractal
(B). The identity

log 3

log 3
= log 4

log 3
· log 3

log 4

expresses that the dimensions multiply,

dim(subordinate) = dim(subordinand)

· dim(subordinator).

Figure 20, (C) and (D) give other illustrations of this
multiplicative relation. The seeded universe model
of the distribution of galaxies (Section IX.D.1) uses
subordination to obtain fractal dusts; see Mandelbrot
(1982, plate 298).

FIGURE 20 The Koch curve (A) and its generator (a); (b), (c),
and (d) are subordinators, and the corresponding subordinates of
the subordinand (A) are (B), (C), and (D).
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E. Intersection and Sums of Codimension

The dimension of the intersection of two sets obviously
depends on their relative placement. When A ∩ B = ∅, the
dimension vanishes. The following is a typical result. For
Borel subsets A and B of RE , and for almost all x ∈ RE ,

dH(A ∩ (B + x)) ≤ max{0, dH(A × B) − E}.
If dH(A × B) = dH(A) + dH(B), this reduces to

dH(A ∩ (B + x)) ≤ max{0, dH(A) + dH(B) − E}.
This is reminiscent of the transversality relation for inter-
sections of smooth manifolds.

Corresponding lower bounds are known in more re-
stricted circumstances. For example, there is a positive
measure set M of similarity transformations of RE with

dH(A ∩ T (B)) ≥ dH(A) + dH (B) − E

for all T ∈ M . Note dH(A ∩ T (B)) = dH(A) + dH(B) − E
is equivalent to the addition of codimensions: E −
dH(A ∩ T (B)) = (E − dH(A)) + (E − dH(B)).

F. Latent Dimensions below 0 or above E

A blind application of the rule that codimensions are addi-
tive easily yields results that seem nonsensical, yet become
useful if they are properly interpreted and the Hausdorff
dimension is replaced by a suitable new alternative.

1. Negative Latent Dimensions as Measures
of the “Degree of Emptiness”

Section E noted that if the codimension addition rule gives
a negative dimension, the actual dimension is 0. This ex-
ception is an irritating complication and hides a feature
worth underlining.

As background relative to the plane, consider the fol-
lowing intersections of two Euclidean objects: two points,
a point and a line, and two lines. Naive intuition tells
us that the intersection of two points is emptier than
the intersection of a point and a line, and that the lat-
ter in turn is emptier than the intersection of two lines
(which is almost surely a point). This informal intu-
ition fails to be expressed by either a Euclidean or a
Hausdorff dimension. On the other hand, the formal ad-
dition of codimensions suggests that the three intersec-
tions in question have the respective dimensions −2, −1,
and 0. The inequalities between those values conform
with the above-mentioned naive intuition. Therefore, they
ushered in the search for a new mathematical defini-
tion of dimension that can be measured and for which
negative values are legitimate and intuitive. This search
produced several publications leading to Mandelbrot
(1995). Two notions should be mentioned.

Embedding. A problem that concerns R2 can often be
reinterpreted as a problem that really concerns RE , with
E > 2, but must be approached within planar intuitions by
R2. Conversely, if a given problem can be embedded into a
problem concerning RE , the question arises, “which is the
‘critical’ value of E − 2, defined as the smallest value for
which the intersection ceases to be empty, and precisely
reduces to a point?” In the example of a line and a point,
the critical E −2 is precisely 1: once embedded in R3, the
problem transforms into the intersection of a plane and a
line, which is a point.

Approximation and pre-asymptotics in mathematics
and the sciences. Consider a set defined as the limit of
a sequence of decreasing approximations. When the limit
is not empty, all the usual dimensions are defined as be-
ing properties of the limit, but when the limit is empty
and all the dimensions vanish, it is possible to consider
instead the limits of the properties of the approximations.
The Minkowski–Bouligand formal definition of dimen-
sion generalizes to fit the naive intuitive values that may
be either positive or negative.

2. Latent Dimensions That Exceed
That of the Embedding Space

For a strictly self-similar set in RE , the Moran equation
defines a similarity dimension that obeys dsim ≤ E . On
the other hand, a generator that is a self-avoiding broken
line can easily yield log(N )/ log(1/r ) = dsim > E . Recur-
sive application of this generator defines a parametrized
motion, but the union of the positions of the motion is
neither a self-similar curve nor any other self-similar set.
It is, instead, a set whose points are covered infinitely of-
ten. Its box dimension is ≤E , which a fortiori is <dsim.
However, one can load a mass on this set by following the
route that applies in the absence of multiple points. Mass
is distributed on the generator’s intervals in proportion to
the values of rdsim

i . By infinite recursion, the difference
between the times t ′ and t ′′ when points P ′ and P ′′ are
visited is defined as the mass supported by the portion of
the curve that links these points.

If so and dsim > E , the similarity dimension acquires a
useful role as a latent dimension. For example, consider
the multiplication of dimensions in Section III.D. Suppose
that our recursively constructed set is not lighted for all
instants of time, but only intermittently when time falls
within a fractal dust of dimension d ′′. Then, the rule of
thumb is that the latent dimension of the lighted points
is dsimd ′′. When dsimd ′′ < E , the rule of thumb is that the
true dimension is also dsimd ′′.

Figure 21 shows an example. The generator has N = 6
segments, each with scaling ratio r = 1/2, hence latent
dimension dsim = log 6/log 2 > 2. Taking as subordinator
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FIGURE 21 Left: Generator and limiting shape with latent dimension exceeding 2. Right: generator and limiting
shape of a subordinate with dimension <2. For comparison, this limiting shape is enclosed in the outline of the left
limiting shape.

a Cantor set with generator having N = 3 segments, each
with scaling ratio r = 1/2, yields a self-similar fractal with
dimension log 3/log 2.

G. Mapping

Recall f satisfies the Hölder condition with exponent
H if there is a positive constant c for which | f (x) −
f (y)| ≤ c|x − y|H . For such functions, dH( f (A)) ≤
(1/H )dH(A). If H = 1, f is called a Lipschitz function;
f is bi-Lipschitz if there are constants c1 and c2 with
c1|x − y| ≤ | f (x) − f (y)| ≤ c2|x − y|. Hausdorff dimen-
sion is invariant under bi-Lipschitz maps. The analogous
properties hold for box-counting dimension.

IV. METHODS OF COMPUTING DIMENSION
IN MATHEMATICAL FRACTALS

Upper bounds for the Hausdorff dimension can be rel-
atively straightforward: it suffices to consider a specific
family of coverings of the set. Lower bounds are more
delicate. We list and describe briefly some methods for
computing dimension.

A. Mass Distribution Methods

A mass distribution on a set A is a measure µ with
supp(µ) ⊂ A and 0 < µ(A) < ∞. The mass distribution
principle (Falconer, 1990, p. 55) establishes a lower bound
for the Hausdorff dimension: Let µ be a mass distribution
on A and suppose for some s there are constants c > 0
and δ > 0 with µ(U ) ≤ c · |U |s for all sets U with |U | ≤ δ.
Then δ ≤ dH(A).

Suitable choice of mass distribution can show that no
individual set of a cover can cover too much of A. This
can eliminate the problems caused by covers by sets of a
wide range of diameters.

B. Potential Theory Methods

Given a mass distribution µ, the s-potential is defined by
Frostman (1935) as

φs(x) =
∫

dµ(x)

|x − y|s .

If there is a mass distribution µ on a set A with∫
φs(x) dµ(x) < ∞, then dH(A) ≥ s. Potential theory has

been useful for computing dimension of many sets, for
example, Brownian paths.

C. Implicit Methods

McLaughlin (1987) introduced a geometrical method,
based on local approximate self-similarities, which suc-
ceeds in proving that dH(A) = dbox(A), without first deter-
mining dH(A). If small parts of A can be mapped to large
parts of A without too much distortion, or if A can be
mapped to small parts of A without too much distortion,
then dH(A) = dbox(A) = s and Hs(A) > 0 (in the former
case) or Hs(A) < ∞ (in the latter case). Details and ex-
amples can be found in Falconer (1997, Section 3.1).

D. Thermodynamic Formalism

Sinai (1972), Bowen (1975), and Ruelle (1978) adapted
methods of statistical mechanics to determine the dimen-
sions of fractals arising from some nonlinear processes.
Roughly, for a fractal defined as the attractor A of a fam-
ily of nonlinear contractions Fi with an inverse function f
defined on A, the topological pressure P(φ) of a Lipschitz
function φ: A → R is

P(φ) = lim
k→∞

1

k
log

{ ∑
x ∈ Fix( f k )

exp[φ(x) + φ( f (x))

+ · · · φ( f k−1(x))]

}
,

where Fix( f k) denotes the set of fixed points of f k . The
sum plays the role of the partition function in statistical
mechanics, part of the motivation for the name “ther-
modynamic formalism.” There is a unique s for which
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P(−s log | f ′|) = 0, and s = dH(A). Under these condi-
tions, 0 <Hs(A) < ∞,Hs(A) is a Gibbs measure on A,
and many other results can be deduced. Among other
places, this method has been applied effectively to the
study of Julia sets.

V. METHODS OF MEASURING DIMENSION
IN PHYSICAL SYSTEMS

For shapes represented in the plane—for example, coast-
lines, rivers, mountain profiles, earthquake faultlines, frac-
ture and cracking patterns, viscous fingering, dielectric
breakdown, growth of bacteria in stressed environments—
box dimension is often relatively easy to compute. Select a
sequence ε1 > ε2 > · · · > εn of sizes of boxes to be used to
cover the shape, and denote by N (εi ) the number of boxes
of size εi needed to cover the shape. A plot of log(N (εi ))
against log(1/εi ) often reveals a scaling range over which
the points fall close to a straight line. In the presence of
other evidence (hierarchical visual complexity, for exam-
ple), this indicates a fractal structure with box dimension
given by the slope of the line. Interpreting the box di-
mension in terms of underlying physical, chemical, and
biological processes has yielded productive insights.

For physical objects in three-dimensional space—for
example, aggregates, dustballs, physiological branch-
ings (respiratory, circulatory, and neural), soot parti-
cles, protein clusters, terrain maps—it is often easier
to compute mass dimension. Select a sequence of radii
r1 > r2 > · · · > rn and cover the object with concentric
spheres of those radii. Denoting by M(ri ) the mass of the
part of the object contained inside the sphere of radius ri ,
a plot of log(M(ri )) against log(ri ) often reveals a scaling
range over which the points fall close to a straight line. In
the presence of other evidence (hierarchical arrangements
of hole sizes, for example), this indicates a fractal struc-
ture with mass dimension given by the slope of the line.
Mass dimension is relevant for calculating how density
scales with size, and this in turn has implications for how
the object is coupled to its environment.

VI. LACUNARITY

Examples abound of fractals sharing the same dimension
but looking quite different. For instance, both Sierpin-
ski carpets in Fig. 22 have dimension log 40/log 7. The
holes’ distribution is more uniform on the left than on
the right. The quantification of this difference was un-
dertaken in Mandelbrot (1982, Chapter 34). It introduced
lacunarity as one expression of this difference, and took

FIGURE 22 Two Sierpinski carpet fractals with the same
dimension.

another step in characterizing fractals through associated
numbers. How can the distribution of a fractal’s holes or
gaps (“lacunae”) be quantified?

A. The Prefactor

Suppose A is either carpet in Fig. 22, and let Aδ de-
note the δ-thickening of A. As mentioned in Section II.D,
area(Aδ) ∼ 	 · δ2−log 40/ log 7. One measure of lacunarity is
1/	, if the appropriate limit exists.

It is well known that for the box dimension, the limit as
ε → 0 can be replaced by the sequential limit εn → 0, for
εn satisfying mild conditions. For these carpets, natural
choices are those εn just filling successive generations of
holes. Applied to Fig. 22, these εn give 1/	 ≈ 0.707589
and 0.793487, agreeing with the notion that higher lacu-
narity corresponds to a more uneven distribution of holes.

Unfortunately, the prefactor is much more sensitive than
the exponent: different sequences of εn give different lim-
its. Logarithmic averages can be used, but this is work in
progress.

B. The Crosscuts Structure

An object is often best studied through its crosscuts by
straight lines, concentric circles, or spheres. For a fractal
of dimension d in the plane, the rule of thumb is that the
crosscuts are Cantor-like objects of dimension d − 1. The
case when the gaps between points in the crosscut are
statistically independent was singled out by Mandelbrot
as defining “neutral lacunarity.” If the crosscut is also self-
similar, it is a Lévy dust.

Hovi et al. (1996) studied the intersection of lines (linear
crosscuts) with two- and three-dimensional critical per-
colation clusters, and found the gaps are close to being
statistically independent, thus a Lévy dust.

In studying very large DLA clusters, Mandelbrot et al.
(1995) obtained a crosscut dimension of dc = 0.65 ± 0.01,
different from the value 0.71 anticipated if DLA clus-
ters were statistically self-similar objects with mass di-
mension dmass = 1.71. The difference can be explained by
asserting the number of particles Nc(r/ l) on a crosscut
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of radius r scales as Nc(r/ l) = 	(r )(r/ l)dc . Here l is
the scaling length, and the lacunarity prefactor varies
with r . Assuming slow variation of 	(r ) with r , the
observed linear log–log fit requires 	(r ) ∼ r δd , where
δd = dmass − 1 − dc = 0.06 ± 0.01. Transverse crosscut
analysis reveals lacunarity decreases with r for large DLA
clusters.

C. Antipodal Correlations

Select an occupied point p well inside a random fractal
cluster, so that the R × R square centered at p lies within
the cluster. Now select two vectors V and W based at p
and separated by the angle θ . Finally, denote by x and y the
number of occupied sites within the wedges with apexes
at p, apex angles φ much less than θ , and centered about
the vectors V and W . The angular correlation function
is

C(θ ) = 〈xy〉 − 〈x〉〈y〉
〈x2〉 − 〈x〉〈x〉 ,

where 〈· · ·〉 denotes an average over many realizations of
the random fractal. Antipodal correlations concern θ = π .
Negative and positive antipodal correlations are inter-
preted as indicating high and low lacunarity; vanishing
correlation is a weakened form of neutral lacunarity.

Mandelbrot and Stauffer (1994) used antipodal correla-
tions to study the lacunarity of critical percolation clusters.
On smaller central subclusters, they found the antipodes
are uncorrelated.

Trema random fractals. These are formed by remov-
ing randomly centered discs, tremas, with radii obeying a
power-law scaling. For them, C(π ) → 0 with φ because
a circular hole that overlaps a sector cannot overlap the
opposite sector. But nonconvex tremas introduce positive
antipodal correlations. For θ close to π , needle-shaped
tremas, though still convex, yield C(θ ) much higher than
for circular trema sets. From this more refined viewpoint,
needle tremas’ lacunarity is much lower.

VII. FRACTAL GRAPHS
AND SELF-AFFINITY

A. Weierstrass Functions

Smooth functions’ graphs, as seen under sufficient mag-
nification, are approximated by their tangents. Unless the
function itself is linear, the existence of a tangent con-
tradicts the scale invariance that characterizes fractals.
The early example of a continuous, nowhere-differentiable
function devised in 1834 by Bolzano remained unpub-
lished until the 1920s. The first example to become widely

FIGURE 23 The effect of H on Weierstrass graph roughness. In
all pictures, b= 1.5 and H has the indicated value.

known was constructed by Weierstrass in 1872. The Weier-
strass sine function is

W (t) =
∞∑

n=0

b−Hn sin(2πbnt),

and the complex Weierstrass function is

W0(t) =
∞∑

n=0

b−Hn exp(2π ibnt).

Hardy (1916) showed W (t) is continuous and nowhere-
differentiable if and only if b > 1 and 0 < H < 1.

As shown in Fig. 23, the parameter H determines the
roughness of the graph. In this case, H is not a perspicuous
“roughness exponent.” Indeed, as b increases, the ampli-
tudes of the higher frequency terms decrease and the graph
is more clearly dominated by the lowest frequency terms.
This effect of b is a little-explored aspect of lacunarity.

B. Weierstrass–Mandelbrot Functions

The Weierstrass function revolutionized mathematics but
did not enter physics until it was modified in a series
of steps described in Mandelbrot (1982, pp. 388–390;
(2001d, Chapter H4). The step from W0(t) to W1(t) added
low frequencies in order to insure self-affinity. The step
from W1(t) to W2(t) added to each addend a random phase
ϕn uniformly distributed on [0, 1]. The step from W1(t) to
W3(t) added a random amplitude An = √−2 log V , where
V is uniform on [0, 1]. A function W4(t) that need not be
written down combines a phase and an amplitude. The lat-
est step leads to another function that need not be written
down: it is W5(t) = W4(t) + W4(−t), where the two ad-
dends are statistically independent. Contrary to all earlier
extensions, W5(t) is not chiral. We have

W1(t) =
∞∑

n=−∞
b−Hn(exp(2π ibnt) − 1),

W2(t) =
∞∑

n=−∞
b−Hn(exp(2π ibnt) − 1) exp(iϕn),

W3(t) =
∞∑

n=−∞
Anb−Hn(exp(2π ibnt) − 1).
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C. The Hölder Exponent

A function f: [a, b] → R has Hölder exponent H if there
is a constant c > 0 for which

| f (x) − f (y)| ≤ c · |x − y|H

for all x and y in [a, b] (recall Section III.G). If f is con-
tinuous and has Hölder exponent H satisfying 0 < H ≤ 1,
then the graph of f has box dimension dbox ≤ 2 − H .

The Weierstrass function W (t) has Hölder exponent
H , hence its graph has dbox ≤ 2 − H . For large enough
b, dbox = 2 − H , so one can think of the Hölder exponent
as a measure of roughness of the graph.

VIII. FRACTAL ATTRACTORS AND
REPELLERS OF DYNAMICAL
SYSTEMS

The modern renaissance in dynamical systems is asso-
ciated most often with chaos theory. Consequently, the
relations between fractal geometry and chaotic dynam-
ics, mediated by symbolic dynamics, are relevant to our
discussion. In addition, we consider fractal basin bound-
aries, which generalize Julia sets to much wider contexts
including mechanical systems.

A. The Smale Horseshoe

If they exist, intersections of the stable and unstable
manifolds of a fixed point are called homoclinic points.
Poincaré (1890) recognized that homoclinic points cause
great complications in dynamics. Yet much can be un-
derstood by labeling an appropriate coarse-graining of a
neighborhood of a homoclinic point and translating the
corresponding dynamics into a string of symbols (the
coarse-grain bin labels). The notion of symbolic dynam-
ics first appears in Hadamard (1898), and Birkhoff (1927)
proved every neighborhood of a homoclinic point contains
infinitely many periodic points.

Motivated by work of Cartwright and Littlewood (1945)
and Levinson (1949) on the forced van der Pol oscillator,
Smale (1963) constructed the horseshoe map. This is a
map from the unit square into the plane with completely
invariant set a Cantor set 	, roughly the Cartesian product
of two Cantor middle-thirds sets. Restricted to 	, with the
obvious symbolic dynamics encoding, the horseshoe map
is conjugate to the shift map on two symbols, the archetype
of a chaotic map.

This construction is universal in the sense that it oc-
curs in every transverse homoclinic point to a hyperbolic
saddle point. The Conley–Moser theorem (see Wiggins,
1990) establishes the existence of chaos by conjugating

the dynamics to a shift map on a Cantor set under general
conditions. In this sense, chaos often equivalent to simple
dynamics on an underlying fractal.

B. Fractal Basin Boundaries

For any point c belonging to a hyperbolic component of the
Mandelbrot set, the Julia set is the boundary of the basins
of attraction of the attracting cycle and the attracting fixed
point at infinity. See the right side of Fig. 3.

Another example favored by Julia is found in New-
ton’s method for finding the roots of a polynomial f (z)
of degree at least 3. It leads to the dynamical system
zn+1 = N f (zn) = zn − f (zn)/ f ′(zn). The roots of f (z) are
attracting fixed points of N f (z), and the boundary of the
basins of attraction of these fixed points is a fractal; an ex-
ample is shown on the left side of Fig. 24. If contaminated
by even small uncertainties, the fate of initial points near
the basin boundary cannot be predicted. Sensitive depen-
dence on initial conditions is a signature of chaos, but here
we deal with something different. The eventual behavior
is completely predictable, except for initial points taken
exactly on the basin boundary, usually of two-dimensional
Lebesgue measure 0.

The same complication enters mechanical engineer-
ing problems for systems with multiple attractors. Moon
(1984) exhibited an early example. Extensive theoretical
and computer studies by Yorke and coworkers are de-
scribed in Alligood and Yorke (1992). The driven har-
monic oscillator with two-well potential

d2x

dt2
+ f

dx

dt
− 1

2
x(1 − x2) = A cos(ωt)

is a simple example. The undriven system has two
equilibria, x = −1 and x = +1. Initial values (x, x ′) are
painted white if the trajectory from that point eventually
stays in the left basin, black if it eventually stays in the right
basin. The right side of Fig. 24 shows the initial condition
portrait for the system with f = 0.15, ω = 0.8, and A =
0.094.

IX. FRACTALS AND DIFFERENTIAL OR
PARTIAL DIFFERENTIAL EQUATIONS

The daunting task to which a large portion of Mandelbrot
(1982) is devoted was to establish that many works of
nature and man [as shown in Mandelbrot (1997), the lat-
ter includes the stock market!] are fractal. New and often
important examples keep being discovered, but the hard-
est present challenge is to discover the causes of fractal-
ity. Some cases remain obscure, but others are reasonably
clear.
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FIGURE 24 Left: The basins of attraction of Newton’s method for finding the roots of z3 − 1. Right: The basins of
attraction for a damped, driven two-well harmonic oscillator.

Thus, the fractality of the physical percolation clusters
(Section I.B.3.e) is the geometric counterpart of scaling
and renormalization: the analytic properties of those ob-
jects follow a wealth of power-law relations. Many math-
ematical issues, some of them already mentioned, remain
open, but the overall renormalization framework is firmly
rooted. Renormalization and the resulting fractality also
occur in the structure of attractors and repellers of dy-
namical systems. Best understood is renormalization for
quadratic maps. Feigenbaum and others considered the
real case. For the complex case, renormalization estab-
lishes that the Mandelbrot set contains infinitely many
small copies of itself.

Unfortunately, additional examples of fractality proved
to be beyond the scope of the usual renormalization. A
notorious case concerns DLA (Section I.B.3.f).

A. Fractal Attractors of Ordinary
Differential Equations

The Lorenz equations for fluid convection in a two-
dimensional layer heated from below are

dx

dt
= σ (y−x),

dy

dt
= −xz+r x −y,

dz

dt
= xy−bz.

Here x denotes the rate of convective overturning, y the
horizontal temperature difference, and z the departure
from a linear vertical temperature gradient. For the pa-
rameters σ = 10, b = 8/3, and r = 28, Lorenz (1963) sug-
gested that trajectories in a bounded region converge to
an attractor that is a fractal, with dimension about 2.06,
as estimated by Liapunov exponents. The Lorenz equa-
tions are very suggestive but do not represent weather
systems very well. However, Haken established a con-

nection with lasers. The sensitivity to initial conditions
common to chaotic dynamics is mediated by the intricate
fractal interleaving of the multiple layers of the attractor.
In addition, Birman and Williams (1983) showed an abun-
dance of knotted periodic orbits embedded in the Lorenz
attractor, though Williams (1983) showed all such knots
are prime. Grist (1997) constructed a universal template,
a branched 2-manifold in which all knots are embedded.
Note the interesting parallel with the universal aspects of
the Sierpinski carpet (Section I.B.1.a). It is not yet known
if the attractor of any differential equation contains a uni-
versal template. The Poincaré–Bendixson theorem pro-
hibits fractal attractors for differential equations in the
plane, but many other classical ordinary differential equa-
tions in at least three dimensions exhibit similar fractal
attractors in certain parameter ranges.

B. Partial Differential Equations on Domains
with Fractal Boundaries (“Can One Hear
the Shape of a Fractal Drum?”)

Suppose D ⊂ Rn is an open region with boundary ∂ D.
Further, suppose the eigenvalue problem �2u = −λu
with boundary conditions u(x) = 0 for all x ∈ ∂ D has
real eigenvalues 0 < λ1 < λ2 < · · · . For D with suffi-
ciently smooth boundary, a theorem of Weyl (1912)
shows N (λ) ∼ λn/2, where the eigenvalue counting func-
tion N (λ) = {the number of λi for which λi ≤ λ}. If the
boundary ∂ D is a fractal, Berry (1979, pp. 51–53) postu-
lated that some form of the dimension of ∂ D appears in
the second term in the expansion of N (λ), therefore can
be recovered from the eigenvalues. This could not be the
Hausdorff dimension, but Lapidus (1995) showed that it
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FIGURE 25 Perimeter of an extensively studied fractal drum.

is the Minkowski–Bouligard dimension. The analysis is
subtle, involving some deep number theory.

For regions with fractal boundaries, the heat equation
�2u = (∂/∂t)u shows heat flow across a fractal bound-
ary is related to the dimension of the boundary. Sapoval
(1989) and Sapoval et al. (1991) conducted elegant exper-
iments to study the modes of fractal drums. The perimeter
of Fig. 25 has dimension log 8/log 4 = 3/2. A membrane
stretched across this fractal curve was excited acoustically
and the resulting modes observed by sprinkling powder
on the membrane and shining laser light transverse to the
surface. Sapoval observed modes localized to bounded
regions A, B, C, and D shown in Fig. 25. By carefully
displacing the acoustic source, he was able to excite each
separately.

Theoretical and computer-graphic analyses of the wave
equation on domains with fractal boundaries have been
carried out by Lapidus et al. (1996), among others.

C. Partial Differential Equations on Fractals

The problem is complicated by the fact that a fractal is not
a smooth manifold. How is the Laplacian to be defined on
such a space? One promising approach was put forward
by physicists in the 1980s and made rigorous in Kigami
(1989): approximate the fractal domain by a sequence of
graphs representing successive protofractals, and define
the fractal Laplacian as the limit of a suitably renormalized
sequence of Laplacians on the graphs. Figure 26 shows the
first four graphs for the equilateral Sierpinski gasket. The
values at the boundary vertices are specified by the bound-
ary conditions at any nonboundary vertex x0. The mth
approximate Laplacian of a function f (x) is the product
of a renormalization factor by

∑
( f (y) − f (x0)), where

the sum is taken over all vertices y in the mth protofrac-
tal graph corresponding to the mth-stage reduction of the
whole graph.

FIGURE 26 Graphs corresponding to protofractal approxima-
tions of the equilateral Sierpinski gasket.

With this Laplacian, the heat and wave equations can be
defined on fractals. Among other things, the wave equation
on domains with fractal boundaries admits localized solu-
tions, as we saw for the wave equation on fractal drums. A
major challenge is to extend these ideas to fractals more
complicated than the Sierpinski gasket and its relatvives.

D. How Partial Differential Equations
Generate Fractals

A quandary: It is universally granted that physics is ruled
by diverse partial differential equations, such as those of
Laplace, Poisson, and Navier–Stokes. A differential equa-
tion necessarily implies a great degree of local smooth-
ness, even though close examination shows isolated
singularities or “catastrophes.” To the contrary, fractal-
ity implies everywhere-dense roughness or fragmentation.
This is one of the several reasons that fractal models in di-
verse fields were initially perceived as being “anomalies”
contradicting one of the firmest foundations of science.

A conjecture–challenge responding to the preceding
quandry. There is no contradiction at all: fractals arise
unavoidably in the long-time behavior of the solution of
very familiar and innocuous-looking equations. In partic-
ular, many concrete situations where fractals are observed
involve equations that allow free and moving boundaries,
interfaces, or singularities. As a suggestive “principle,”
Mandelbrot (1982, Chapter 11) described the following
possibility: under broad conditions that largely remain to
be specified, these free boundaries, interfaces, and singu-
larities converge to suitable fractals. Many equations have
been examined from this viewpoint, but we limit ourselves
to two examples of central importance.

1. The Large-Scale Distribution of Galaxies

Chapters 9 and 33–35 of Mandelbrot (1982) conjecture
that the distribution of galaxies is fractal. This conjec-
ture results from a search for invariants that was central
to every aspect of the construction of fractal geometry.
Granted that the distribution of galaxies certainly deviates
from homogeneity, one broad approach consists in correct-
ing for local inhomogeneity by using local “patches.” The
next simplest global assumption is that the distribution is
nonhomogeneous but scale invariant, therefore fractal.

Excluding the strict hierarchies, two concrete construc-
tions of random fractal sets were subjected to detailed
mathematical and visual investigation. These construc-
tions being random, self-similarity can only be statistical.
But a strong counteracting asset is that the self-similarity
ratio can be chosen freely, is not restricted to powers of a
prescribed r0. A surprising and noteworthy finding came
forth. These constructions exhibited a strong hierarchical
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structure that is not a deliberate and largely arbitrary input.
Details are given in Mandelbrot (1982).

The first construction is the seeded universe based on
a Lévy flight. Its Hausdorff-dimensional properties were
well known. Its correlation properties (Mandelbrot 1975)
proved to be nearly identical to those of actual galaxy
maps. The second construction is the parted universe
obtained by subtracting from space a random collection
of overlapping tremas. Either construction yields sets that
are highly irregular and involve no special center, yet, with
no deliberate design, exhibit a clear-cut clustering, “fila-
ments” and “walls.” These structures were little known
when these constructions were designed.

Conjecture: Could it be that the observed “clusters,”
“filaments,” and “walls” need not be explained separately?
They may not result from unidentified features of spe-
cific models, but represent unavoidable consequences of
a variety of unconstrained forms of random fractality, as
interpreted by a human brain.

A problem arose when careful examination of the sim-
ulations revealed a clearly incorrect prediction. The sim-
ulations in the seeded universe proved to be visually far
more “lacunar” than the real world. That is, the simula-
tions’ holes are larger than in reality. The parted universe
model fared better, since its lacunarity can be adjusted at
will and fit to the actual distribution. A lowered lacunarity
is expressed by a positive correlation between masses in
antipodal directions. Testing this specific conjecture is a
challenge for those who analyze the data.

Does dynamics make us expect the distribution of galax-
ies to be fractal? Position a large array of point masses
in a cubic box in which opposite sides are identified to
form a three-dimensional torus. The evolution of this ar-
ray obeys the Laplace equation, with the novelty that the
singularities of the solution are the positions of the points,
therefore movable. All simulations we know (starting with
those performed at IBM around 1960) suggest that, even
when the pattern of the singularities begins by being uni-
form or Poisson, it gradually creates clusters and a sem-
blance of hierarchy, and appears to tend toward fractality. It
is against the preceding background that the limit distribu-
tion of galaxies is conjectured to be fractal, and fractality
is viewed as compatible with Newton’s equations.

2. The Navier–Stokes Equation

The first concrete use of a Cantor dust in real spaces is
found in Berger and Mandelbrot (1963), a paper on noise
records. This was nearly simultaneous with Kolmogorov’s
work on the intermittence of turbulence. After numerous
experimental tests designed to create an intuitive feeling
for this phenomenon (e.g., listening to turbulent velocity
records that were made audible), the fractal viewpoint was

extended to turbulence, and circa 1964 led to the following
conjecture.

Conjecture. The property of being “turbulently dissipa-
tive” should not be viewed as attached to domains in a fluid
with significant interior points, but as attached to fractal
sets. In a first approximation, those sets’ intersection with
a straight line is a Cantor-like fractal dust having a dimen-
sion in the range from 0.5 to 0.6. The corresponding full
sets in space should therefore be expected to be fractals
with Hausdorff dimension in the range from 2.5 to 2.6.

Actually, Cantor dust and Hausdorff dimension are not
the proper notions in the context of viscous fluids because
viscosity necessarily erases the fine detail essential to frac-
tals. Hence the following conjecture (Mandelbrot, 1982,
Chapter 11; 1976). The dissipation in a viscous fluid oc-
curs in the neighborhood of a singularity of a nonviscous
approximation following Euler’s equations, and the mo-
tion of a nonviscous fluid acquires singularities that are
sets of dimension about 2.5–2.6. Several numerical tests
agree with this conjecture (e.g., Chorin, 1981).

A related conjecture, that the Navier–Stokes equations
have fractal singularities of much smaller dimension, has
led to extensive work by V. Scheffer, R. Teman, and
C. Foias, and many others. But this topic is not exhausted.

Finally, we mention that fractals in phase space entered
the transition from laminar to turbulent flow through the
work of Ruelle and Takens (1971) and their followers. The
task of unifying the real- and phase-space roles of fractals
is challenging and far from being completed.

X. FRACTALS IN THE ARTS
AND IN TEACHING

The Greeks asserted art reflects nature, so it is little sur-
prise that the many fractal aspects of nature should find
their way into the arts—beyond the fact that a representa-
tional painting of a tree exhibits the same fractal branching
as a physical tree. Voss and Clarke (1975) found fractal
power-law scaling in music, and self-similarity is designed
in the music of the composers György Ligeti and Charles
Wuorinen. Pollard-Gott (1986) established the presence of
fractal repetition patterns in the poetry of Wallace Stevens.
Computer artists use fractals to create both abstract aes-
thetic images and realistic landscapes. Larry Poons’ paint-
ings since the 1980s have had rich fractal textures. The
“decalcomania” of the 1830s and the 1930s and 1940s
used viscous fingering to provide a level of visual com-
plexity. Before that, Giacometti’s Alpine wildflower paint-
ings are unquestionably fractal. Earlier still, relatives of the
Sierpinski gasket occur as decorative motifs in Islamic and
Renaissance art. Fractals abound in architecture, for exam-
ple, in the cascades of spires in Indian temples, Bramante’s
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plan for St. Peter’s, Malevich’s Architektonics, and some
of Frank Lloyd Wright’s designs. Fractals occur in the
writing of Clarke, Crichton, Hoag, Powers, Updike, and
Wilhelm, among others, and in at least one play, Stoppard’s
Arcadia. Postmodern literary theory has used some con-
cepts informed by fractal geometry, though this applica-
tion has been criticized for its overly free interpretations
of precise scientific language. Some have seen evidence
of power-law scaling in historical records, the distribu-
tion of the magnitudes of wars and of natural disasters,
for example. In popular culture, fractals have appeared
on t-shirts, totebags, book covers, MTV logos, been men-
tioned on public radio’s A Prairie Home Companion, and
been seen on television programs from Nova and Murphy
Brown, through several incarnations of Star Trek, to The X-
Files and The Simpsons. While Barnsley’s (1988) slogan,
“fractals everywhere,” is too strong, the degree to which
fractals surround us outside of science and engineering is
striking.

A corollary of this last point is a good conclusion to
this high-speed survey. In our increasingly technologi-
cal world, science education is very important. Yet all
too often humanities students are presented with limited
choices: the first course in a standard introductory se-
quence, or a survey course diluted to the level of journal-
ism. The former builds toward major points not revealed
until later courses, the latter discusses results from science
without showing how science is done. In addition, many
efforts to incorporate computer-aided instruction attempt
to replace parts of standard lectures rather than engage
students in exploration and discovery.

Basic fractal geometry courses for non-science students
provide a radical departure from this mode. The subject
of fractal geometry operates at human scale. Though new
to most, the notion of self-similarity is easy to grasp,
and (once understood) handles familiar objects from a
genuinely novel perspective. Students can explore frac-
tals with the aid of readily available software. These in-
stances of computer-aided instruction are perfectly nat-
ural because computers are so central to the entire field
of fractal geometry. The contemporary nature of the field
is revealed by a supply of mathematical problems that
are simple to state but remain unsolved. Altogether, many
fields of interest to non-science students have surprising
examples of fractal structures. Fractal geometry is a pow-
erful tool for imparting to non-science students some of
the excitement for science often invisible to them. Sev-
eral views of this are presented in Frame and Mandelbrot
(2001).

The importance of fractals in the practice of science and
engineering is undeniable. But fractals are also a proven
force in science education. Certainly, the boundaries of
fractal geometry have not yet been reached.
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