
 

Fractals in Physics (Trieste, 1985).
Edited by Luciano Pietronero
& Erio Tosatti, Amsterdam: North-Holland, 1986, pp.21–28 H24

Diagonally self-affine fractal cartoons.
Part 3: “anomalous” Hausdorff dimension

and multifractal “localization”

• �Illustrated long chapter foreword. An “anomaly” can be dismissed, or
welcomed as a challenge to be faced. Moreover, the familiar mantra
applies. When facing a challenge, the recommended first step is to
become acquainted with its nature as intimately as possible. It is best to
create suitable pictures and very literally to “see” and ponder them. This
chapter provides a marvelous fresh example.

The original was written at Harvard in 1985, with no computer access.
Belatedly, this reprint created the need for illustrations and preparing
them brought fresh understanding of special examples, turned out to be
highly educational, and motivated this lengthy illustrated foreword.

In the continuing search for a good definition of self-affine functions,
this chapter reveals fresh complexity. It adds a wrinkle to the contrast
between generic pure multifractality and the presence of a multifractal
mark on the unifractality which is this book's main topic.

I have not followed closely the purely mathematical development of
the anomalous Hausdorff dimension, but rumor has it that many
questions raised by McMullen 1984 remain open despite considerable
progress on many fronts and a large literature (including Lalley &
Gatsouras 1992, 1994, Peres 1994, and Peres & Kenyon 1996).

Two constructions that are less closely related than they might seem. For
reasons described shortly, Figure 1 will be called “nonlocalized,” and
Figures 2 and 3 will both be called “localized.” In a first approximation, all
three – and also Figures 1 and 2 of Chapter H22 – use the same up, down,
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up and up generator. In a second approximation, the arrows along the
sticks of this common generator vary from figure to figure.

Consider the final functions f(t) that those generators yield by context-
free recursion (as defined in Chapter �H2, Section 2).

First question: Do changes in the arrows' directions suffice to affect
f(t)? The answer from pure mathematics is “yes.” To wide surprise,
McMullen 1984 found that the localized graph in Figure 2 has the
“anomalous” Hausdorff–Besicovitch dimension D HB ∼ 1.45. The non-

FIGURE C24-1. In this chapter, the figures illustrate the Foreword. Figures 1, 2,
and 3 describe the constructions of three self-affine “cartoons” whose genera-
tors are seen on the first three sticks on the upper left panels. They are the
same except that the directions of some sticks are reversed, as seen on the
upper left panels. H = 1/2 in all three cases but other visual and numerical
aspects are different, showing that seemingly small changes in the algorithm
can have spectacular effects. For this graph, D HB = 1.5 = 2 − H, as expected.
As befits a “cartoon,” the up and down oscillation is highly reminiscent of
WBM (Chapter �H3) or “Weierstrass–Mandelbrot” functions for the exponent
H = 1/2 (Chapter �H4).
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localized graph in Figure 1 has D HB = 1.5 = 2 − H, as expected. The
Hölder exponent is H = 1/2 and the box dimension is 1.5 = 2 − H in both
cases.

The quantification of roughness being a key goal of fractal geometry
(recently pushed to the front, as seen in Section 1 of the Overview), it
would be wonderful if one could, in each case, improve the measurement
of roughness by quoting both dimensions.

A second question arises: Are the differences between the two panels
visible to the naked eye? One glance at Figures 1, 2, and 3 shows that the
answer is an emphatic “yes,” again. Clearly, all those graphs are not as
“innocuous” as promised by their definitions. The search for telling visual
“symptoms” will examine two properties.

FIGURE C24-2. Starting with Figure 1, the second generator stick was inverted.
For this graph of a self-affine function f(t), D HB ∼ 1.45 < 2 − H. The up and
down oscillation is conspicuously non-Brownian exhibiting an infinity of sharp
needles, all pointing down. Most values of f(t) are highly localized. Is this f(t)
the cartoon of any intrinsically interesting process?
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Perceived absence or presence of “localization” in Figures 1, 2, and 3. In
Figure 1, the up and down oscillation seems unconstrained and is highly
reminiscent of Wiener Brownian motion (WBM) (Chapter �H3), and also
of Weierstrass–Mandelbrot motion for H = 1/2 (Chapter �H4).

To the contrary, both Figures 2 and 3 seem inhomogeneous in the
sense that f(t) seems, much of the time, to zigzag within tight horizontal
strips. Interrupting those zigzags, quick back and forth transitions create a
collection of smooth surgical needles.

In fact, each needle has a rich structure. Starting on Figure 3 from the
“bump” that peaks at x = 1/2 and y = 1, smaller bumps are obtained by a
series of affine reductions in the ratios of 1/2 vertically and 1/4 horizon-

FIGURE C24-3. Starting again with Figure 1, the second and fourth generator
sticks were inverted. This variant is, like Figure 2, highly non-Brownian but,
unlike Figure 3, clearly not asymmetric. As a matter of fact, denote by
N+(k) and N−(k) the number of intervals that point up and down after the kth
stage. It is easy to show that, as k → ∞, the ratio N+(k)/N−(k) converges to 1.
In this sense, Figures 1 and 3 are both asymmetric.
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tally. The bumps become increasingly needle-like but, in an affine sense,
their sides' extreme “unsmoothness” remains unchanged.

Moreover, the zigzags seem to be interrupted by quick transitions to
other horizontal strips. Seen closely, each transition is not instantaneous
but has a rich affine structure. On a higher level of complexity, the up
and down oscillations in Figures 2 and 3 strongly recall the “singular non-
decrease” that characterizes the Cantor and “Besicovitch” staircases; the

FIGURE C24-4. This six-panel figure features three approximations to the
y-projected measures of the functions drawn in Figures 1 and 2.

The middle panels from top to bottom show the uniform initiator and the
first approximation, which are common to both measures.

To the left are two further approximations relative to the nonlocalized
variant f(t). They suggest, strongly and correctly, that the limit projected
measure has a smooth density.

To the right are two further approximations relative to the localized
variant. Here, the f(t) projected measure is binomial; this is the simplest of all
multifractal measures, yet it quickly becomes extraordinarily uneven.
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latter are defined as indefinite integrals of the binomial measures that we
shall encounter soon. “Singular nondecrease,” the technical term that
Lebesgue attached to those functions, was well chosen, since the new
meaning followed an everyday sense. Before the Cantor staircase became
fully understood, past “intuition” had to be retrained and refined. Further
retraining is now required to fully understand the behavior of Figures 2
and 3, which combine continuity with localized values.

The needles are the key to anomalous Hausdorff–Besicovitch dimensions. The
needles give play to a feature that is needed in the mathematical theory of
D HB  but seems at first to lack intuitive justification. Indeed, D HB
involves a notion called Hausdorff measure, and it is necessary to insure
that Hausdorff measure satisfies all the conditions to be a measure. For
that, the D HB  of a set S involves the most efficient covering of S by disks
of radius ≤ ρ, rather than = ρ. In the case of Cantor dusts, the avail-
ability of disks of radius < ρ makes no difference. But in the case of local-
ized graphs, it allows the neighborhoods of sharp needle points to be
covered more tightly, which in turn affects D HB . Other fractal dimen-
sions, such as the local box dimension (see Chapter H22), use more
restricted coverings of radius = ρ which sharp needles do not affect.

When needles exist and point toward the exterior of the loop, they “attract
lightning,” and more prosaically concentrate electric charges on a subset of
dimension 1. Figures 1 and 3 appear the same as seen from top or bottom,
while Figure 2 is very asymmetric. There are two ways to draw a half-
circle centered at t = f(t) = 1/2 and including the points (0, 0) and (1, 1).
Either half-circle, combined with the graph on Figures 1, 2, or 3, creates a
loop (“Jordan curve”). Set this loop at an electric potential 0 and a far-
away point at potential 1, and solve the Laplace equation. For every loop,
one can say that, roughly speaking, the electric charge will concentrate on
a “Makarov set” with D HB = 1. It will be fun to evaluate this potential
and inspect this set on Figures 1, 2, and 3.

The distribution of the y-projected measure: it is multifractal under localiza-
tion and very smooth without localization. So far, the distinction between the
absence or presence of localization was visual. Could another visual aid
help confirm the distinction confirmed in a more quantitative fashion?

A natural measure on the graph of any function of t attaches to the arc
between t′ and t′′ a mass equal to t′ − t′′ . The idea is to start with a
uniform measure on the time axis, “lift” it on the graph of f(t), and then
project this natural measure on the ordinate axis. The first stages of con-
struction for Figures 1 and 2 are shown in Figure 4.
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To the nonlocalized Figure 1, corresponds the left of Figure 4. Here,
the asymptotic measure is smooth and graphed by a straight line. This is
an opportunity to recall the Moore “crinkly curves” of Chapter �H2. The
y-projected measure in that case is a projection of the Cesaro triangle
sweep, therefore in the limit its density varies linearly.

To the localized Figure 2 corresponds the right side of Figure 4. Here,
to the contrary, the asymptotic measure is anything but smooth. It has no
density and concentrates on a set of y whose length (“linear Lebesgue
measure”) is zero. The reader familiar with multifractals recognizes the
first stages of the construction of a binomial measure corresponding to the
masses m′ = 2.5 and m′′ = 0.75. This and other multifractal measures are
the topic of M 1999F and the projected M 2001T. Marked “localization” is
already conspicuously present in those first stages. Asymptotically, a
theorem guessed by Besicovitch and proved by Eggleston asserts that the
bulk of the variation of f(t) can be viewed as concentrated in a subset of
Hausdorff–Besicovitch dimension D HB = − m′ log2 m′ − m′′ log2 m′′ ∼ 0.81.

To characterize the graph, one still needs the overall Hölder exponent,
which is H = 1/2, and was knowingly inputted together with the gener-
ator. But additional numerical characteristics are provided by some indi-
rect consequences of the generator. They include the Hölder exponents of
the y-projected intrinsic measure, namely, the above D HB  and they range
from αmax = − log2(1/4) = 2, in the regions of high localization, to
αmin = − log2(3/4) ∼ 0.41 in the low-measure regions in-between.

If the sticks carry randomly selected arrows, an anomalous D HB  and
localization are almost surely absent. That is, both effects manifest very
peculiar resonances. But they deserve broad attention. •

 ✦ Abstract.  For certain self-affine fractals constructed recursively,
McMullen has shown that the Hausdorff–Besicovitch dimension D HB
takes a doubly “anomalous” value: it is a fraction and is strictly smaller
than the local box dimension D BL . This raises interesting questions: does
this discrepancy point toward deep new developments? Does it cast
doubt upon the special position of D HB  in fractal geometry? This paper
addresses these questions and also comments on the dimensions of
sections for certain self-affine fractals. ✦
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FOR RECURSIVELY CONSTRUCTED SELF-AFFINE FRACTALS, the
Hausdorff–Besicovitch dimension D HB  may be strictly smaller that the
local box dimension D BL .

 1. Introduction

For a very simple self-affine construction, a theorem of McMullen 1984
yields for DHB a value that came as a surprise and has interesting impli-
cations. Recall from the chapter before last that a cartoon involves a box
generator and a stick generator. When b′, b′′ and the box generator are
given, the stick generator, that is, the combination of the signs of r′n and
r′′n can be chosen to yield D HB < D BL . This inequality is “anomalous,”
that is, came as a surprise. Additional results on these and related struc-
tures are given in Bedford 1984. However, we shall prove or argue that
other combinations of signs – including some random combinations –
yield D HB = D BL . The mathematical implications of this variability will be
seen – unexpectedly – to involve multifractal measures. Conceptual issues
will also be discussed; they may mean that D HB  is not a physical notion,
contrary to my previous conviction.

As background, this paper includes some results that seem novel, con-
cerning cuts of certain self-similar fractals.

2. McMullen's theorem yielding D HB  and a corollary

 Theorem A  (McMullen 1984, as extended by Curtis T. McMullen in
private communication.) Consider a recursive self-affine fractal generator
in a lattice, with b′ and b′′ the horizontal and vertical bases and with
H = log b′′/ log b′. Assume r′n = ± 1/b′ and r′′n = 1/b′′ for all n (this means
that all arrows point up). Denote by b′j the number of cells contained in
the j-th horizontal row of the generator. Then the value of D HB  for the
limit fractal is the solution of

b′′D = � b′Hj .

 Corollary B  (McMullen 1984, Bedford 1984) For the self-affine fractals
covered in Theorem A, one may have DBH < DML = D BL , where DML and
D BL  are the local mass and box dimensions discussed in the chapter
before last.
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 Numerical example.  D HB < D BL when the generator is Figure 2 in
Chapter H22. Here, b′ = 4, b′′ = 2, H = 1/2, b′1 = 1 and b′2 = 3. Theorem A
yields 2D = 1 + 

√
3 ; hence D HB = 1.44998, but D BL = 2 − H = 1.5.

 Observation.  In this example, the Y-projected measure is singular.
Indeed, it is the well-known binomial multifractal measure (a Besicovitch
measure in the terminology of FGN, p. 377) with p1 = 1/4 and p2 = 3/4.

3. Expression for the vertical dimension anomaly, defined as
A′′ = D BL − D HB

The “vertical dimension anomaly” will be defined by A′′ = D BL − D HB .
This is an intrinsic measure of the dispersion of the nonvanishing values
of b′j. For example, the stick generator of the record of a continuous func-
tion may either make a few large swings or many small ones; the discrep-
ancy is larger in the second case. (The reader is encouraged to construct
specific illustrations.)

First, we express the anomaly A′′ in terms of pj = b′j/N, where the
notation obviously intentionally mimics the probabilities corresponding to
the Y-projected measure. The vertical dimension anomaly A′′ becomes

A′′ = (1 − H)( logb′′N′′ − I′′H), where I′′H =
( logb′′�pH

j )

(H − 1)
.

The first term in A′′, namely logb′′N′′, is the dimension of the set that
supports the Y-projected measure; this support is an interval when
N′′ = b′′, but it is a Cantor dust when N′′ < b′′. The second term in A′′ –
namely, I′′H – is familiar to the reader acquainted with the binomial meas-
ures: it is the critical (“generalized”) dimension of the exponent q = H of
the Y-projected measure.

Next, we note that the binomial measure is a special case of the
random multifractal measure introduced in Mandelbrot 1974f{N15}. This
is made clearer by adopting the notation Wj = b′jb′′/N = pjb′′ and〈
Wh

〉 
= ∑ b′′− 1Wh

j . This notation attributes equal probabilities to the b′′ pos-
sible values of a (random) “weight” W that satisfies < W > = 1. Now,

A′′ = − logb′′

〈
WH

〉 
= − logb′

〈
WH

〉
1/H) > 0.
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 Corollary C.  (McMullen, private communication.) When b′ ≠ b′′, a neces-
sary and sufficient condition for the anomaly to vanish is that all b′j that
do not vanish must be identical.

 Observation.  The Y-projected measure is uniform on its support when
A′′ = 0 it is singular on its support when A′′ > 0.

4. Fractal dimension of horizontal cuts

4.1. Background: horizontal cuts of certain recursive self-similar fractals
and expressions for their anomaly. To appreciate the results in the next
subsection, it is necessary to understand fully the corresponding results
relative to self-similar fractals, which are self-affine fractals that corre-
spond to b′′ = b′. Those results seem new but are also interesting in them-
selves. Specifically, it is known that, for the ordinary Sierpiński carpet, the
dimension obtained from the overall dimension log38 by subtracting 1 is
not observed along any horizontal cut. Horizontal cuts are therefore
“anomalous.” To study their dimensions, let us place a uniform mass on
the carpet, each construction stage spreading it into 8 pieces of density
9/8. Clearly, the X- and Y-projected measures are both multinomial meas-
ures, with b = 3, p1 = 3/8, p2 = 2/8 and p3 = 3/8. Let me show that the
dimensions of the cuts are related to these measures.

To carry out the argument, take general integer values of b, N and the
corresponding pj = bj/N, not excluding the possibility of some pj = 0. Write
the intersecting horizontal line's ordinate in base b as y = 0.y1y2... and let kj
be the number of repetitions of j in the first k digits. Define β(yh) as equal
to b′j if yh = j. In the k-th prefactal approximation, the horizontal line of
ordinate y intersects a number of cells of side b− k that is equal to the
product of the β(yh) from h = 1 to k. Thus, the kth approximation to the
horizontal cut has the dimensional exponent

log Nk(y)/ log(bk) = �(kj/k) logbbj.

When y is such that kj/k → qj for every j, this expression has a limit; the
limit is a box dimension, and that dimension depends on y. Now, choose a
point using the intrinsic measure on our fractal: choosing t with uniform
measure attributes to y the Y-projected multinomial singular measure. In
this case, (kj/k) → pj. Subtracting and adding ∑(kj/k) logbN − 1 to both sides
yields the result that the cut's dimension is almost surely
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D = ( logbN − 1) + (1 − I), where I = − � pj logb pj.

Since logbN is the dimension of our original planar fractal, logbN − 1 is the
value given by the rule that taking a cut decreases the dimension by one.
We know that the rule fails. We see that the anomaly depends on the
1-information dimension of the Y-projected measure, and it can either be
equal to or greater than zero.

The anomaly vanishes if (and only if) I = 1, which requires pj ≡ N/b.

If pj = 1/N′′ for N′′ values of j and pj = 0 for the other values, the
anomaly is 1 − logbN′′. In that case, the Y-projected measure is uniform
over a Cantor dust. Consider the horizontal cut with respect to the
uniform measure on [0,1] it is a.s. empty but with respect to the uniform
measure on the Cantor dust it is a.s. of dimension

logb − logbN′′.

This is a very interesting way to generalize the standard rule to cuts that
are conditioned to be nonempty.

4.2. Horizontal cuts of certain recursive self-affine fractals. The results to
be described here are parallel to those of Section 4.1.

When the anomaly A′′ vanishes, the horizontal cuts of the fractal in
Theorem A are either empty or Cantor dusts of dimension logb′(N/N′′).
When N′′ = b′′, the cut is never empty and is of dimension

logb′(N/b′′) = D BL − 1,

which fulfills the standard “subtract one” rule about cuts' dimensions.
When N′′ < b′′ and the cut is conditioned to be nonempty, it is of dimen-
sion

logb′(N/N′′) = (D BL − 1) + logb′′N′′,

which expresses the generalized standard rule of Section 4.1 in self-affine
terms. But one can also write

logb′(N/N′′) = D*
BL − 1,
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which fits the standard rule in a manner appropriate for self-affinity, by
replacing D BL  by D*

BL , which is the dimension the fractal takes after it
has been squeezed vertically to eliminate its gaps.

When A′′ > 0, the cut's dimension is almost surely

D = logb′N − �pj logb′pj.

It is convenient to restate this in terms of dimensions. Since

logb′N = D ML − (1/H − 1) logb′N′′ = D ML − (H − 1) logb′′N′′,

we have

D = D BL − (1 − H) logb′′N′′ − HI′′1,

where I′′1 = − ∑pj logb′′pj = 1 − 〈W log W
〉
. This is the information

dimension of the Y-projected measure. It follows that the cut's dimen-
sional anomaly takes the form

D − (D BL − logb′′N′′) = H logb′′N′′ − I′′1 .

This anomaly is > 0, and is > H logb′′N′′ − I′′H , because I′′1 < I′′H.

5. Definitions: D∗ as a global counterpart for D HB , and the horizontal
anomaly A′ = D* − D HB

It was observed in the Chapter before last that the formulas for
D BL = D ML and D BG = D MG are obtained from each other by exchanging
the roles of b′ and b′′ and the roles of N′ and N′′. Love of symmetry imme-
diately led me to seek a global counterpart to D BH  in the solution D∗ of
the equation

b′D = � b′′(1/H)
j .

The corresponding quantity A′ = D BG − D∗ = − logb′′

〈
W1/H

〉
< 0 can be

called a “horizontal dimension anomaly.”
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In the case of function records, one has D∗ = 1. In Chapter 22, this
value has become familiar for all other global dimensions. The anomaly
A′ = 0, and the vertical cuts' dimension is 0, as it should be. The anomaly
A′ plays for vertical cuts the role that A′′ plays for horizontal cuts, but
does D∗ have anything else to recommend itself as a dimension?

6. Self-affine continuous records not covered by Theorem A

6.1. An example where DHB=DBL and a question. The two generators
shown on Figures 2 and 3 in Chapter H22, differ only by the direction of
the arrow placed on the second stick, but this seemingly minor feature has
drastic consequences. Figure 3 is the coordinate of the Peano motion and
its Y-projected measure is differentiable with the density 2(1 − x). For it,
C. McMullen has shown (private communication) that D HB = 1.5.

More generally, suppose that the Y-projected measure has right and
left derivatives f ′(y + ) and f ′(y − ). A heuristic application of the formula
in Theorem A to the generator after k stages yields the following formula,
with the sum from p = 1 to b′′k:

b′′kd = �
y = pb′′− k

(∆f(y))Hb′′k ∼ ∑b′′− k(f ′(y + ))Hb′′(2 − H)k ∼ b′′(2 − H)k⌠
⌡(f ′(y + ))H dy.

When k � 1,

D = 2 − H + (1/k) logb′′ 
⌠
⌡(f ′(y + ))H dy.

Asymptotically for k → ∞, D = 2 − H.

The same result extends, obviously, to the case where the Y-projected
measure is absolutely continuous on a Cantor dust of ys.

 Reminder.  Consider the fractional Brownian process BH(t). In that case,
D BH = 2 − H; hence A′′ = 0. It is also known that the Y-projected measure
is differentiable. Observe that, for random processes, the abscissas of the
horizontal level cuts through the ordinate y form the set of recurrences to
the point y (also called the “local time”).

 Question.  Is there a one-to-one relation between A being 0 and the
H-information dimension of the Y-projected measure being 1?
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6.2. Random generators. Randomly selected generators are manageable
when they involve geometrically imbedded birth processes. (The study of
these processes deserves to be extended beyond the properties sketched
here.)

The simplest function MH(t), used in M 1985l {H21}, is obtained by
taking b′ = 4, b′′ = 2 and the same stick generator as in Figure 1 but posi-
tioning all four arrows at random, with equal probabilities for “up” and
“down.” A partly heuristic argument to be given momentarily suggests
that the Y-projected measure of MH(t) is differentiable. Assuming that the
question at the end of Section 6.1 should be answered in the affirmative,
this measure's differentiability suggests that D HB = D ML = 2 − H. This
answer is asserted without evidence in the Scripta paper, before I knew
that the issue is a difficult one.

The first half of the argument is rigorous. The mass in a y interval of
length b′′− k of the y-coordinate is contributed by rectangles of width b′− k,
of height b′′− k and of weight N− k = b′− k. The number of these rectangles is
given by a simple birth random process with an average of
N/b′′ = b′/b′′ > 1 offspring per generation. Consider for each y the
sequence of nested b-adic intervals of length b′′− k that defines y (if y is not
b′′-adic) or the sequences that define y + and y − (if y is b′′-adic). The
average measures over the intervals in one of these sequences are of the
form (b′/b′′)− k × (number of offspring in the k-th generation). A standard
theorem on birth processes (Harris 1963, p. 12) tells us that these average
measures almost surely converge to a limit, which is the value of a strictly
positive random variable W satisfying 

〈
W

〉
= 1.

Therefore, µ(y), defined as the cumulative measure between 0 and y,
has the property that over the nested intervals of length b′′− k that define y
y + , or y − , the average slope of µ(y) converges to a limit.

The next step becomes much easier to state for b′ = 4, b′′ = 2, and N = 4.
Select a finite k�1 and consider the k-th approximate measure µk(y) over a
dyadic interval (y′, y′′) of length 2− k. In the left half of this interval, the
number of offspring at stage k = 1 is the sum of 2kW independent random
variables of expected value 2 and finite variance σ2. This number can be
written as 2k + 1W + (2.2kW)1/2σG, where G is a normalized Gaussian vari-
able. In the right half of the same interval, the same expression holds
except that + is replaced by –. Therefore, over the two halves of our
binary interval the slopes of µk + 1(y) are W ±

√
WG

√
2− (k − 1)/2 . The approx-

imate measure µk + 1(y) is obtained from µk(y) by midpoint displacement
(see M 1982F{FGN}, Chapter 26). That is, the midpoint value
µk((y′ + y′′)/2) is displaced by the amount 2− k − 1 σ

√
WG 2− 3(k − 1)/2. When k
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is very large, one can neglect variations of W between construction stages,
and one finds for µ(y) the series

µ(y) ∼ µ∗(y) = µk(y) + a
√
W �

h>k

ahσ(2hy).

Here a = (2
√
2 )

− 1
and σ(y) is a random sawtooth function, namely a func-

tion that vanishes for integer y's, takes independent normalized Gaussian
values at half integer y's and is linear over dyadic intervals of length
2− k − 1. The resulting function µ∗(y) − µk(y) is familiar. For a > 1/2, it is con-
tinuous but non-differentiable (and serves in several rough fractal algo-
rithms meant to model mountains). For a < 1/2, and hence for our present
value a = (2

√
2 )

− 1
, the function is continuous and right and left

differentiable. (In fact, the derivative µ∗′(y + ) is near the Brownian func-
tion; it is a variant of the Rademacher series, and is close to the Fourier
series of the Brown-Wiener process.)

I expect but did not check that the heuristics in the last paragraph can
be either made rigorous or replaced by a rigorous short argument.

Conclusion. Since the present application involves a < 1/2, µ(y) is
differentiable: the above W is its derivative for non- b′′-adic y's, and is its
right or left derivatives for b′′-adic y's. (At the b′′-adic points, the right
and left derivatives are negatively correlated.)

6.3. More general MH(t)-like random functions. The discussion is written
in terms of b′, b′′ and N, instead of 4, 2 and 4, because the same argument
holds more generally whenever the stick generators that yield continuous
records are assigned certain special probabilities. (When b′′ > 1 and b′ � 1,
randomly generated stick generators will suffice).

For other probability assignments, however, the situation is more
complex. An interval of length b′′− k may be nested in either of b′′
“locations” within an interval of length b′′− k + 1, and the expected number
of offspring usually depends on the “location.” The corresponding
Y-projected measure is not expected to be differentiable.

 Conjecture.  Scattered examples suggest to me that both D HB < D BL and
D HB = D BL can a.s. be achieved by recursive self-affine continuous
random records and that A′′ = D BL − D HB  is a continuous function of the
probabilities allocated to the acceptable stick generators.
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7. Random self-affine sets not covered by theorem A

7.1. Generators obtained by conservative curdling with N/b′′ > 1 or
canonical curdling with pb′ > 1 . The idea of selecting the generator com-
pletely at random can take one of several forms. One can attribute equal
probabilities to every way of drawing N among the b′b′′ cells. When all
the choices are statistically independent, the ultimate fractal is obtained by
the self-affine counterpart of the “microcanonical” {P.S.2000, also called
“conservative”} version of the process of multifractal curdling introduced
in M 1974f{N15} and M 1974c {N16} (see also M 1982F{FGN}, Chapter 10).

Alternatively, one can form a generator at random, each cell having a
given probability p of belonging to the generator. Each generator then
includes pb′′b′ cells on the average. When all the choices are statistically
independent, the ultimate fractal is obtained by the self-affine counterpart
of the “canonical” version of the process of multifractal curdling that I also
introduced in 1974 (FGN, Chapter 10).

The expected number of offspring per generation is N/b′′ in the first
model, and pb′′ in the second. The birth process becomes a birth and
death process, but the argument of Section 3 remains generally valid if
N/b′′ > 1 in the first model, and pb′′ > 1 in the second. The novelty is that
the derivative can now be zero with a probability that is between 0 and 1 .
In a given sample, it may vanish over some intervals of y.

7.2. Generators obtained by conservative curdling with N/b′′ < 1 or
canonical curdling with pb′ < 1 . In the combined generator after k stages,
b′j = 0 for most values of j. In a first examination, let us disregard these
values and consider only the j such that bj > 0. A standard theorem in the
theory of birth processes (Harris 1963, p. 12) is that the conditional distrib-
ution of b′j, knowing that b′j > 0, tends for k → ∞ to the distribution of a
limit random variable. If we denote this limit by W, as in Section 3, then
the measure carried by a nonempty interval of length b′′− k is again the
product of W by the measure N− k of a cell of area b′′− k × b′− k. The average
number of nonvanishing b′j is, therefore, Nk/

〈
W

〉
. In the limit as k → ∞,

the y-projected measure is carried by a fractal dust of dimension logb′′N,
(respectively, logb′′(pb′b′′). This result could have been guessed. Less easy
to guess is the fact that, on this dust, the distribution of the measure is
uniform except for the factor W. This shows a situation that is parallel to
that in Section 7.1, with the exception that 

〈
W

〉
> 1 here.

Alternatively, one can study the measure over a fractal dust obtained
as follows. At each stage, pick all cells of length b′′− k in which b′j > 0 plus
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any number of empty cells needed to add up to N. This amounts to
“dilute” W to allow W = 0 and to make 

〈
W

〉
= 1. The resulting situation is

parallel to that encountered earlier in this section. Either way, the
heuristic use of Theorem A suggests that D HB  is arbitrarily close to D BL .
That is, D HB = D BL .

 Conjecture.  I expect D HB = D BL to hold widely for randomly generated
self-affine sets that are not constrained to be records of functions.

 Comment.  Canonical curdling generates a special planar multifractal.
One ought to investigate the projections of more general planar
multifractals, both in the self-similar and in the self-affine cases.

 8. Discussion

 First observation.  The value of D HB yielded by Theorem A is usually
considered “anomalous” because it is a fraction, but this view has been
exorcised by fractal geometry. The second anomaly is that the value of
DHB is the wrong fraction. But Theorem A was not contrived for this
purpose. Earlier known “second anomalies” had, to the contrary, been spe-
cifically contrived. They were, for example, highly non-uniform, like the
Bouligand anomaly in Section 1 above. For this reason, in every previous
case of interest to physics, the fractal dimension could first be obtained by
some rough and ready method, usually based on D BL  or DML, and later
“confirmed” by more elaborate and technical calculations of D HB .

 Second observation:  When dealing with records of functions such as B(t),
it is natural to attach equal measures to records that correspond to time
intervals of equal duration. This property is satisfied in the case of B(t) by
the Hausdorff measure relative to a suitable gauge function. Does such a
gauge function exist for the recursive self-affine functions covered by
Theorem A? If it does, the resulting Hausdorff time is not real time.

My gut reaction was to view the assignment of arrows (signs to the r′n
and r′′n ) in the self-affine fractal construction as being a “non-physical”
fine detail, and a quantity that depends on this assignment could not be
physical. But this fine detail turned out to affect the (unique) a.s. dimen-
sion of the horizontal cuts, which is physically meaningful. At that point,
we seemed to have another repeat of what had happened repeatedly as
fractal geometry transformed extreme “pathologies” into natural behav-
iors. But, in a third stage, the argument of Section 4.1 came to mind; now
the anomaly in D HB  again appears non-physical. Even if it should even-
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tually reveal some useful new physical intuition, I fear that the Hausdorff-
Besicovitch definition has now lost its earlier “special standing.”

Recall that earlier works of mine gave much play to D HB  in the study
of fractals, even using it in FGN as basis for a “tentative” definition of the
term fractal. The main reason to use it then, however, was that it was
well seasoned by age and more papers were devoted to it than to its vari-
ants, although these papers were mostly irrelevant to the geometric needs
that I was pursuing. These rationales for D HB  in fractal geometry must
now undergo active reexamination.

9. Record of the Weierstrass function W0(t) and its D HB

The oldest example of a continuous non-differentiable function is the
Weierstrass function W0(t) discussed in M 1982F {FGN}, page 388. A long-
standing irritant is that D HB  is not known in the case of W0(t). The same is
clearly true of the self-affine variant that I introduced {FGN,} p. 389. The
self-affinity exponent H is the Hölder-Lipschitz exponent; hence a classical
result of Besicovitch & Ursell shows that D HB  is at most 2 − H. Everyone
expects D HB = 2 − H, which FGN denotes by D (showing that I did not
anticipate the complications now being revealed). Mauldin & Williams
1986 gave a lower bound that is strictly below D and depends on b.

{P.S. 2000. This section was part of the original draft of M 1986t but
was cut from the printed text. The value of DHB for the graph of W0(t)
continues to be unknown. I wonder whether or not the “new” W func-
tions of Chapter �H4 would be any easier to study.}
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How McMullen 1984 came to be written. Heisuke Hironaka was
Chairman of the Harvard Mathematics Department in 1979-80; we became
good friends. Concurrently, he was Japan's “Mr. Mathematics,” and as
such was often seen on television. In a program devoted to fractals, he
asserted that the fractal dimension of the “cartoon” in Figure 2 is 1.5. A
listener asked for a reference and Hironaka asked me to help. I knew of
no reference and a quick look showed that, while D HB ≤ 1.5 was easy to
prove, D HB ≥ 1.5 was not easy. At that point, the problem fell into the lap
of C. McMullen, then a student (and now a Professor) at Harvard.


