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Diagonally self-affine fractal cartoons.
Part 1: mass, box and gap fractal dimensions,

local or global

•Chapter foreword. Think of the Brownian record B(t). In Wiener's ori-
ginal interpretation, t is time and B is a physical particle's location on a
spatial axis. The two coordinates play sharply different roles, and the units
of B and t (which may be cm and second) can be chosen independently.
Rotation would lead to sets that are no longer records of functions, there-
fore, is not allowable. The expression B(t) − δt defines a function called
“Brownian motion with a drift.” Here, δ is something like a velocity;
B(t) − δt mixes time and space and is conceptually a very different process
from B(t). The same remarks apply to the original interpretation of B(t): in
Bachelier 1900, t is time and B is price in francs. I have also interpreted
B(t) as the vertical section of a Brown landscape M 1982F {FGN}, Chapter
28 and also Chapter H20. There, the coordinates play different roles
because gravity defines the vertical direction, makes overhangs an excep-
tion and makes it useful to represent the relief by a (single-valued) func-
tion. However, both B and t are lengths in this example, and their units
can no longer be chosen independently.

Some “cartoons” previewed in Chapter 21 are studied in depth in
Chapters 22, 23 and 24. Each began as a part of M 1986t. The titles have
been made more descriptive and extensive forewords and/or appendices
have been added.

This chapter reprints the bulk of Part I of M 1986t. The texts of
Sections 1 and 2 being largely superseded by the detailed discussion of
“tile self-affinity” in Chapter �H2, large parts were deleted. When the
remainder was copy-edited, many small gaps were filled.
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After this chapter's abstract and before proceeding with the text, it
may be helpful to skim the Abstracts of the two chapters that follow.

The research reported in Chapters H22, 23 and 24 was supported in
part by the Office of Naval Research, Grant N00014-85-K-018 to Harvard. •

 ✦ Abstract.  This and the next two chapters consider certain diagonally
self-affine fractals obtained by a recursive cascade (in most cases, a non-
random one). It is shown that, in contrast to the unique fractal dimension
of strictly self-similar sets, several distinct dimensions are needed.

This chapter begins with the dimensions defined via the mass in a
sphere and via the covering by uniform boxes. It is shown that either case
introduces two sharply distinct dimensions: a local one, valid on scales
well below the set's crossover scale, and a global one, valid on scales well
above the crossover. For self-affine sets that present gaps, this paper also
tackles gap dimension. ✦

THE FRACTAL CONSTRUCTIONS AND PROCEDURES borrowed from
mathematics involve infinite interpolation. Physical interpolation, on the
contrary, cannot proceed without end, and constructions tend to proceed
by extrapolation. Around 1980, when fractals were first used in physics,
this contrast puzzled many physicists.

In the self-similar case, however, both the mathematicians and the
physicists were pleasantly surprised to find that this contrast did not
matter: the mathematicians' infinitesimal techniques lead to power laws
that hold uniformly at all scales.

In the self-affine case, the situation has proven to be altogether dif-
ferent. Conceptually distinct scaling exponents that in the self-similar case
reduce to a single number called the fractal dimension must now be
replaced by multiple and numerically distinct quantities. Therefore, the
“all-purpose” or “generic” notion of fractal dimension subdivides into
many distinct “special purpose” or “specific notions.”

 1. INTRODUCTION

The gap dimension DG (Section 4) holds uniformly for all scales from 0 to
∞ and the Hausdorff-Besicovitch dimension DHB is a local concept. But
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many other fractal dimensions come in two flavors. The local flavor con-
cerns small scales. The global flavor concerns large scales. Of particular
significance are the global mass dimension DMG and the local box dimen-
sion DBL.

2. THE NOTIONS OF DIAGONAL SELF-AFFINITY

2.1. Diagonal affinities

A special role is played by affinities whose invariant set is made of
straight lines that are parallel to the coordinate axes. Such an affinity,
which I propose to call diagonal, operates in the E-dimensional affine space
AE. Each member of a collection of affinities is specified by giving a fixed
point of coordinates qm for 0 < m < E − 1, and an array of reduction ratios
rm for 0 < m < E − 1, and by considering the map

xm → qm + rm(xm − qm).

The ratios rm need not be positive. And they must not be identical
because otherwise the transformation would fail to be a similitude. In the
simplest recursive the “bases” 1/|rm| = bm, are example integers.

Most of the examples will be sets in the affine plane A2 (i.e., E = 2 ).
We shall write b′ = max bm, b′′ = min bm and H = log b′′/ log b′. The quantity
H, called the affinity exponent, will satisfy 0 < H < 1. When E > 2, there are
E(E − 1)/2 affinity exponents and crossover scales.

Formally, a linear transformation is the sequence of a translation and a
multiplication by a matrix. We will only tackle the cases where the
matrix is diagonal and its diagonal terms are not identical. The product of
two diagonal affinities is a diagonal affinity. Therefore, a collection of
diagonal affinities can be used as the basis for a group.

The issues to be addressed involve the meaning of “square,”
“distance,” and “circle” in affine geometry. These notions remain mean-
ingful for relief cross-sections, but for records of noise or of price, the units
along the t axis and along the B axis are set up independently of each
other. Since there is no meaning to equal height and width, a square
cannot be defined. Similarly, a circle cannot be defined, because its square
radius R2 = ∆t2 + ∆B2 would have to combine the units along both axes.
Furthermore, one cannot “walk a divider” along a self-affine noise record,
to measure its approximate length, because the distance covered by each
step combines a ∆t and a ∆B. On the other hand, a noise record is always
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represented on the same graph paper as is used for a relief section or an
isotropic set. This does not cause the distinction between the affine AE

and the Euclidean RE to disappear, but sometimes this distinction is
elusive, and one is tempted to evaluate various “prohibited” dimensions
“mechanically.” One should not.

2.3. The principle of recursive constructions in a grid easily extends
from self-similar to diagonally self-affine fracals

To generalize the Sierpinski carpet, take the semi-open unit square as initi-
ator. (“Semi-open” means that the top and the right sides are open and
the bottom and left sides are closed. The rectangles to be considered will
also be semi-open). As generator, take the array in Figure 1.

Divide the initiator into 3.4 = 12 subrectangular parts, and erase the
middle two parts, shown in black. Then erase the middle two of the 12
sub-subrectangular parts, etc... The resulting self-affine carpet is the union
of N = 10 “tenths.” Each tenth is obtained from the whole by a diagonal
affinity with r′n = 1/3, r′′n = 1/4 for n = 1 to n = N = 10. The signs of the
reduction ratios can be illustrated by placing arrows along the diagonals
of the ten rectangles. In the present example, arrows must be placed as
marked to insure that the “tenths” of this carpet do not overlap. The fixed
points are the four vertices, the midpoints of the left and right sides, and
the points 1/3 and 2/3 along the top and bottom sides. Indeed, an affin-
ity's fixed point is the point of intersection of the four straight lines that
join the vertices of the whole to these vertices' transforms, each of which is
the vertex of the part.

A general fractal generator in a self-affine lattice is obtained by
drawing b′ × b′′ subrectangles, and keeping N < b′b′′ of them. Again,
|r′n| = 1/b′ and |r′′n| = 1/b′′ for all n. The orientation of the n-th affinity
expressed by the signs of the r′n and r′′n may depend on n. And I propose
that it be represented by a diagonally placed vector. The two variants
shown in Figures 2 and 3 play especially important roles. Surprisingly,
Chapter 24 will show that DHB depends on which variant is chosen!

When both the rectangles and their diagonals are kept, the resulting
fractal is obtained as a limit of nested collections of rectangles, “nested”
meaning that each is contained in the preceding one. When only the diag-
onals are kept, and form a curve, a self-affine fractal curve is obtained as a
limit of broken lines. Connectedness of the stick generator imposes a con-
straint on the retained subrectangles.
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As in FGN, Chapter 13, the stick generator may split into several
curves, creating “islands” and/or “lakes.”

Important special case: When a stick-generated fractal curve is the
record of a (one-valued) continuous function, one has N = b′.

3. THE SIMILARITY DIMENSION HAS NO MEANING FOR
SELF-AFFINE SETS

The “(self-)similarity dimension” DS is a notion specifically addressed to
self-similar fractal sets, which are made of N parts, each obtained from the
whole by a similitude of ratio rn. When all reduction ratios are identical,
with  

 
rn = 1/b, it is well-known that DS = log N/ log b. But for self-affine

fractal sets, the base b is replaced by two bases b′ and b′′, or many bases
bm. In all cases, and the similarity dimension log N/ log b is meaningless
under self-affinity.

It is tempting to “save it” formally by replacing b by some suitably
“effective base” b

∼
 and then attempting to find a useful interpretation for

DG = log N/ log b
∼
. Taking for b

∼
the geometric mean of the bm, namely

b
∼ 

= (b1b2, ...bE)1/E, Section 4 will show that DG is indeed a dimension in the
cases where one can define either gaps or islands.

There are other purely formal generalizations of DS to the self-affine
case; most prove unjustifiable. For example, it is widely known {P.S. 2000;
see Chapter �H3} that the Hausdorff-Besicovitch dimension DHB of the
Brown record is 3/2. When this DHB is written as 1 + 1/2, its value
happens to coincide numerically with 1 + logb′b′′, where b′ is the larger and
b′′ is the smaller base. This has led to the suggestion that the similarity
dimension could be generalized by the expression 1 + logb′b′′. In fact, as
already recalled, the fractional Brownian motion BH(t) yields the com-
pletely different value DHB = 2 − logb′b′′.

Other guesses are less obviously absurd but no more justifiable.

FIGURE C22-1. 
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4. THE GAP DIMENSION IS GIVEN BY DG = E log N/ log(b1b2 ... bE)

We begin with a fractal dimension that is simple but of narrow validity
and interest. The formula for DG is invariant under the interchange of b′
and b′′. We shall see that the other and more important D's are not sym-
metric.

The notion of a gap dimension applies to the self-similar fractals in �E

exemplified by the Cantor dust on the line, and by the Sierpiński gasket
and carpet in the plane. These shapes have the following two properties.
Their E-dimensional measure vanishes (“fat fractals” – the topic, without
the name, of M 1982F{FGN}, Chapter 15 – are not considered here). And
their complement splits into an infinity of gaps (maximal connected open
sets) which are domains in �

E, similar to each other and differing solely
by their linear scale. In all these cases, the following relation is known to
hold for all L:

{number of gaps of linear scale > L}∝L− DG with DG < E.

The exponent DG is called the gap dimension, and all other definitions of
the fractal dimension of a self-similar fractal give the same value. Now
consider self-affine fractals that have gaps. There is some good news to
report, and some bad news.

The good news is that it is still true that the number of gaps scales like
Nk and the volume scales like b1b2...bE. Define linear size as the (1/E)-th
power of volume, i.e., as the geometric mean of the sides. With this defi-
nition, the number-size relation for gaps or islands continues to be a
power law valid for all sizes L. The exponent independent of  L  can con-
tinue to be called a gap dimension; it is the DG defined in Section 3.

The bad news is that DG bears no direct relation to DHB. For example,
consider the generator in Figure 4. Here, DG = log 8/ log

√
24 = 1.30. But

the Chapter after next will show that DHB = 1.34, and we shall soon see
that the basic fractal dimensions are DBL = 1.38 and DMG = 1.20.

FIGURE C22-2. 
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Let us digress to consider the special case of thin fractal dusts (dusts
of Lebesgue measure 0) on the line, such as the Cantor dust. For these
dusts, the gap dimension is a stronger form (valid for all scales) of an
exponent that Besicovitch and Taylor introduced for small scales and
showed to be identical to DHB (M 1982F{FGN}, p. 359). The generalization
of the identity DBT = DHB to E > 1 is known to be correct in some self-
similar cases (Sierpiński carpet; FGN, p. 134). But we now see that in the
self-affine cases, DG stands alone.

5. DIAGONALLY SELF-AFFINE PLANAR FRACTAL CURVES
DEFINED AS GRAPHS OR RECORDS OF FUNCTIONS

The letter H for logb′b′′ is appropriate in the context of this section because
H is the “Hölder exponent.”

5.1. The local mass dimension for small R is 2 − H; the global mass
dimension for large R is 1

When a set S is a self-similar fractal, the mass M(R) contained in the inter-
section of S with a disc (or ball) of radius R behaves like M(R) ∝ RDM. One
can also replace the disc or ball by a square or cube whose sides are par-
allel to the axes, and of length 2R. For some physicists, the relation
M(R) ∝ RDM has become almost a definition of the notion of fractal. But
we shall now show that this scaling rule fails to generalize to self-affine
fractals. For them, the single DM splits into a global DMG and a local DML.

Large radii, satisfying R�tc. The physicists do not usually think of
fractals as objects that one can interpolate without limit. They think pri-
marily of objects that one can extrapolate to long radii, of log-log plots of
mass versus radius that remain linear as R → ∞ and of a mass dimension
defined through DM = limR →∞ log M(R)/ log R. This is sufficient moti-
vation to evaluate this limit for a record of any diagonally self-affine func-
tion, such as a fractional Brownian motion BH(t) or a recursively defined
function. When R�tc, any one of these records is effectively a horizontal

FIGURE C22-3. 
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interval. Within a square of side 2R, it occupies a very thin horizontal
slice. Therefore, if we follow Section 2.5 and weigh our record proportion-
ately to the time elapsed, we find that M(R) ∝ R. That is, we obtain the
striking result that DMG = 1.

Small radii, satisfying R�tc. The mathematicians, contrary to the physi-
cists, are primarily concerned with the case R�tc. In that range, a self-
affine function is effectively a collection of vertical intervals, one for each
zero. Some algebra yields for the local mass dimension the value
DML = 2 − H, which is the familiar value of DHB for the records of BH(t).

Conclusion. We discover that two limits that are identical for self-
similar fractals can differ for self-affine fractals. Since 1 < 2 − H when
0 < H < 1, one has DML > DMG. The rest of the paper extends this discovery.

5.2. The box dimension's local value is 2 − H; its global value is 1

Cover the unit square by a lattice consisting of boxes of side r = 1/b, and
let N(b) denote the number of lattice boxes that intersect the set. Self-
similar sets satisfy N(b) ∝ bDB and DB is the “box dimension,” an abbrevi-
ation for “box-counting dimension”.

Again, this scaling rule fails to generalize to self-affine fractals. For
them, the single DB splits into a global DBG and a local DBL.

Small boxes. The mathematician is only interested in local behavior
and interprets the exponent as limb →∞ log N(b)/ log b = DBL. In the case of
recursively defined function records, cover a piece b′− k = b− 1 wide and
b′′− 1 high using boxes of side b− k. Clearly, these boxes must be piled into
vertical stacks. The number of boxes in each stack is (b′′/b′)− k = b1 − H, and
the number of stacks is b. Hence, the exponent DBL = 2 − H. Similarly, in
the case of BH(t), the heuristic box argument given in FGN (bottom left of
page 237) yields DBL = 2 − H.

Large boxes. The physicist, however, may also want to consider the
global limit when r → ∞, leading to an unbounded record. The portion of
a self-affine record from 0 to t�1 is covered by a single box. Hence,

FIGURE C22-4. 



H22  ♦ ♦ SELF-AFFINE FRACTALS I: MASS, BOX AND GAP DIMENSIONS 445

 lim b → 0 log N(b)/ log b = DBG = 1.

5.3. The dimensions of cuts of the graph of BH(t); the skew cuts are
bounded fractals that are only locally self-similar

As a rule (FGN, p. 135), when a self-similar fractal in the plane is cut by a
line, the fractal dimension decreases by one. This rule is fundamental, but
has numerous exceptions. To apply it to the record of BH(t), which is not
self-similar, care is necessary and well rewarded. We assume that BH(t)
has the intrinsic scale tc = 1.

 Horizontal cuts.  These cuts are self-similar dusts, meaning that their
local dimension also applies globally. The dimension is
1 − H = (2 − H) − 1. Thus, it is obtained from DBL by subtracting 1, and the
fact that DBG = 1 does not matter.

 Vertical cuts.  These cuts reduce to a single point, whose dimension is 0.
This case until now was considered to be an isolated exception to the rule
concerning the dimension of intersections.

Skew cuts by Y = σt, with 0 < σ < ∞. When a cell of size b′− k × b′′− k is
upsized to a unit square, Y = σt is replaced by Y = σ(b′′/b′)kt. Thus, Y = σt
is locally indistinguishable from Y = 0. The skew cut by Y = σt is locally
self-similar; indeed locally identical to the horizontal cut.

But this does not close the problem. The study of self-affinity has sen-
sitized us to also check the global properties and the intrinsic scale.

Globally, a skew cut is not self-similar. In fact, it is bounded; therefore
DMG = DBG = 0. This is confirmed by observing that, globally, Y = σt scales
up to a vertical line. Indeed, DMG = DBG = 0 are the values obtained from
the basic rule if it is applied to the original curve's dimensions
DMG = DBG = 1.

I confess having been, until now, insensitive to the special status of
bounded, locally self-similar fractals. They are extremely common in
nature, the best examples being individual island coastlines and diffusion
limited aggregates.

For a bounded dust, an intrinsic scale is the length of the smallest
interval that contains it. As σ → ∞, this scale approaches zero, which is
why a vertical cut reduces to one point and why the only factor that
matters in the limit is the global dimension, which is 0. In other words,
vertical cuts have now ceased to be exceptions. In addition, as σ → 0, this
intrinsic scale approaches infinity, which is why the horizontal cut is
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unbounded self-similar. This explains why horizontal cuts are not at all
affected by global quantities.

6. SELF-AFFINE RECURSIVE PLANAR FRACTALS FOR WHICH
BOTH AXIAL PROJECTIONS ARE LINE-FILLING

6.1. The projections of a self-affine recursive fractal on the axes

When a projection of the generator fills the corresponding side of the initi-
ator, the projection of the limit fractal also fills that interval. When the
projection of the generator fails to fill the side of the initiator, the
projection of the limit fractal is a dust that leaves uncovered gaps.

6.2. The global mass dimension is DMG= 1 − 1/H + logb′′N = logb′′(Nb′/b′′)
and the local mass dimension is 1 − H + logb′N = logb′(Nb′′/b′)

Once again, we begin with the notion of greatest interest to physics: the
extrapolative global mass dimension. We use a unit square as the initiator
and attach a unit mass to it. The extrapolation is uniquely specified in a
sequence of increasing boxes of mass Nk and area (b′b′′)k. This seems to
suggest that the gap dimension DG = log N/ log b

∼
 is a mass dimension; but

this situation is more complex, because the mass-radius relation requires
the mass to be evaluated within square boxes and not within specially
adapted rectangular boxes. A square box of side b′′k, if chosen at random
within a rectangular box of sides b′k and b′′k, contains on the average the
mass Nk(b′′/b′)k. Hence, the surprising new result

DMG = log(b′′N/b′)k/ log b′′k = 1 + logb′′(N/b′) = 1 − 1/H + logb′′N

In the case of function records (Section 5) N = b′, and hence this DMG duly
yields the already known value DMG = 1.

A similar argument applied to local behavior yields

DML = 1 − H + logb′N.

Again, in the case of function records, N = b′, hence DMG yields the
familiar value 2 − H.

The above formulas could not have been guessed. A first striking
feature is that both are asymmetric functions of b′ and b′′. A second
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feature is that they are symmetric of each other: interchanging
b′ and b′′ replaces H by 1/H and interchanges DMG and DML.

6.3. The global (resp., local) box and mass dimensions

The formula for DBL was obtained (implicitly) long ago, in Kline 1945, in a
case whose degree of generality lies between those of Sections 5 and 6.

6.4. One has DMG = DBG < DG < DBL = DML

Proof: DMG < DBL follows from b′ > b′′. Hence,

log(Nb′/b′′)/ log b′ < log(Nb′′/b′′)/ log b′′.

Averaging the numerators and the denominators separately yields the
quantity log N/ log 

√
b′ b′′ = DG, which is strictly contained between DMG

and DBL.

6.5. Generalizations to E > 2

In the affine space AE, with E > 2, the crossover scales may be widely scat-
tered. In addition to global and local exponents, several other exponents
may be needed.

7. SELF-AFFINE PLANAR RECURSIVE FRACTALS FOR WHICH AT
LEAST ONE OF THE PROJECTIONS IS A CANTOR DUST

7.1. Definitions and example

This section's title restricts attention to the case where (a) r′n > 0 and
r′′n > 0 for all the intervals of the generator and (b) the X- and/or
Y-projections of the limit fractal are Cantor dusts made, respectively, of N′
parts with r′ = 1/b′ and of N′′ parts with r′′ = 1/b′′.

For example, use the generator in Figure 5. Globally, the resulting
fractal is the dust obtained by “mid-thirds removal.” The global dimen-
sions are, therefore, log32. Locally, the resulting fractal is the Devil's stair-
case minus its flat steps. The local dimensions are known to be 1.
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7.2. The global mass dimension is DMG = (1 − 1H) logb′N′ + logb′′N. The
local mass dimension is DML = (1 − H) logb′′N′′ + logb′N.

The argument concerning DMG follows exactly the argument in Section 6.2,
until the point where the average mass in a box of side b′′k is evaluated.
This mass is now allowed to vanish. But massless squares cannot be part
of our hierarchy of boxes. Therefore, it is necessary to exclude the
massless boxes and to take a conditional average mass, which is larger
than the average mass. Observe that b′kH = b′′k. The strip of width b′k and
height b′′k decomposes into (b′/b′′)k boxes of side b′′k, of which N′k(1 − H)

boxes are not empty. Hence, the conditional average mass is NkN′1 − k(1 − H),
and the global mass dimension is given by

DMG = − (1 − H) logb′′N′ + logb′′N = (1 − 1/H) logb′N′ + logb′′N.

A similar argument applied to local behavior yields

DML = (1 − H) logb′′N′′ + logb′N = (1/H − 1) logb′N′′ + logb′N.

The first (respectively, second) expression for DML is symmetric of the
second (respectively, first) expression for DMG.

7.3. One has DML > DMG, with equality, if and only if, N < N′N′′

Writing 1/ log b′′ − 1/ log b′ = F, we obtain

DMG − DML = logb′′N − ( logb′N′ − logb′′N′) − logb′N − ( logb′N′′ − logb′′N′′)

= F( log N − log N′ − log N′′)

= F log(N/N′N′′).

Since F > 0 and N < N′N′′, we have DMG ≤ DML.

FIGURE C22-5. 
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Equality prevails only if N = N′N′′, in which case our planar Cantor
dust is the Cartesian product of two linear Cantor dusts. A linear Cantor
dust is self-similar; thus the simplicity of the self-similar situation also
exists in the self-affine case, where it is obtained as a Cartesian product.

7.4. The global and local box dimensions take the same values as the
mass dimensions

This is obvious by inspection.

8. SELF-AFFINE SURFACES

This section comments briefly on two functions: Z(x,y), where the (x,y)
plane is isotropic and the scaling parameter is H, and T(x,y,z), where the
(x,y,z) space is itself affine and the scaling parameters are G and H.

8.1. Graphs of fractal functions of a point in an isotropic plane and
models of relief

The simplest model of the Earth's relief (FGN, Chapter 28) is a fractional
Brownian surface BH(x,y), where the point with coordinates x and y is in
an isotropic plane. All characteristics of this surface depend on the single
parameter H. It is easy to see that DBG = DMG = 2, while DBL = DML = 3 − H.
Also, DHB = 3 − H.

Dimensions' behavior under vertical or horizontal plane sections. Recall
the rule that, when a fractal is intersected by a plane, the dimension
decreases by 1. This rule is fundamental but seems to have many
exceptions; let us show how some of these exceptions may be eliminated.

The vertical sections of BH(x,y) have both local and global properties,
and the rule applies to both DBL and DBG, without any problem.

The horizontal sections are the coastlines of all the islands taken
together. They are self-similar and have only one dimension, which coin-
cides with the local dimension of vertical sections. Horizontal sections
have an infinite intrinsic scale.

Thus, a dimension that yields much information about the horizontal
sections tells only half of the story about the vertical sections.

Dimensions' behavior under skew plane sections. As previously dis-
cussed for the skew lines in Section 5.3, a skew plane Z = σx downsizes
locally to a horizontal plane, and upsizes globally to a vertical plane. Both
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the local and the global dimensions are decreased by 1. {PS 1999: A char-
acteristic feature of these “coastlines” is that, for σ > 0, the left-hand half-
plane is mostly ocean and the right-hand half-plane is mostly land; small
details (including bays, capes, islands and deadvalleys) are nearly
isotropic.}

8.2. Fractal functions of a variable in an isotropic plane: clouds and rain

My fractal model of coastlines was extended in Lovejoy 1982 to cloud
boundaries of vertical projection on the Earth's surface. This in turn led
Lovejoy & M 1985 to a two-dimensional model of rain areas or clouds. It
is based on “fractal sums of pulses” (FSP), a self-explanatory new term for
a family of self-affine surfaces that I had previously introduced for other
purposes. In the FSP model, some quantity (like temperature, opaqueness
or rain intensity) is ruled by a self-affine function ZH(x,y), where the (x,y)
plane is isotropic. One can apply BH(x,y) to a relief because a mountain's
altitude is mostly a continuous function, but rainfall intensities are sharply
discontinuous in time and space. In the simplest case, only the parameter
H is necessary to fully characterize the function.

8.3. Fractal functions of a variable in an affine plane: clouds

Large clouds of many kinds are like pancakes parallel to the Earth's
surface. The conventional argument given by meteorologists for this
common appearance is that the atmosphere is three-dimensional on small
scales and two-dimensional on large scales, with a crossover scale in-
between. In a counter-argument, Schertzer & Lovejoy 1986 argue from
available empirical evidence that the atmosphere itself is self-similar in x
and y but is self-affine in x (or y) and z.

I think this is an excellent proposal, and I like the way D. Schertzer
and S. Lovejoy adapt various models of mine to make them self-affine, or
more completely self-affine. The dimensional properties of the corre-
sponding fractals are therefore worthy of exploration. Unfortunately,
Schertzer & Lovejoy 1986 gives numbers with little or no motivation, and
shows no awareness of the interesting complications that the topic pre-
sents.

With little additional complication, one can immediately consider self-
affine functions T(x,y,z), where the horizontal variables (x, y, z) are
isotropic. The basic self-affinity property is invariance under a map whose
diagonal terms can be written as r, rG, and rGH with G < 1. In addition,
using the awkward but self-explanatory notation of op. cit., one has
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δT(δx) ∝ (δH)GH, δT(δy) ∝ (δy)GH, and δT(δz) ∝ (δz)H; hence, H < 1. It is
easy to find that for the record of T, DMG = DBG = 3 irrespectively of H and
G. However, other dimensions of the record, and the dimensions of other
objects related to T, usually depend on the object itself and on H and/or
G.

For example, consider DBL. When δx = δy = δz�1, δT(δx) is dominated
by δT(δz) ∝ (δz)GH. Therefore, covering the record of T by boxes of side
δx = δy = δz requires (δx)− 3 stacks with ∝ (δz)GH − 1 boxes in each stack.
Conclusion: DBL = 4 − GH.

8.4. Coverings by rectangles and the notion of “elliptical dimension”

In the case E = 3, b1 = b2 and b3 = bH
1 , Schertzer & Lovejoy 1986 gives promi-

nence to the quantity Del = 2 + H, which it calls the “elliptical dimension of
space.” The motivation is that in the isotropic 3-dimensional case, Del = 3,
and in the isotropic 2-dimensional case, Del = 2. Schertzer & Lovejoy 1986
then reports that “it is therefore natural to regard 2 + H as the fractal
dimension of this” self-affine space.

This attractive motivation, however, does not suffice. Moreover, it is
weakened by the second supporting argument, which notes that the case
E = 2 and b2 = bH

1 with H = 1/2 yields “Del = 1.5, which is the same as the
fractal dimension suggested” for the record of B(t). In fact, we know that
for BH(t) one has DHB = 2 − H rather than 1 + H; these two formulas take
the same value for H = 1/2 because of a numerical coincidence.

The other supporting argument is that “the number of eddies of hori-
zontal scale λ may be written as λ− D with D = Del. However, the vertical
scale would have given D = 1 + 2/H; why choose the horizontal scale?

A search for a clearcut interpretation of 2 + H as a dimension has
involved private conversations with J. P. Kahane and J. Peyrière, who
suggest investigating “intrinsic” coverings that use not cubes, but affine
rectangles b′′− k high and b′− k wide, the “radius” of a rectangle being its
longer side. Local Hausdorff-like dimensions of this kind are discussed by
Peyrière 1986b.

The concrete physical meaning of covering by rectangles is still
unproven. Its adoption would of course involve additional local and
global dimensions, many of which are found to take on very questionable
values. For example, the mass dimensions in the case studied in Section 6
become logb′N globally and logb′′N locally. Both values yield a very biased
and incomplete view of these fractals' structure. Specifically, take a self-
affine Sierpiński carpet with b′ = 9 and b′′ = 3 and one big gap, leaving a
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generator with N = 20. Its global mean dimension based on intrinsic rec-
tangles is logb′N = 1.36. The same values continue to apply if b′′ is replaced
by any integer from 3 to 9 (inclusive). The carpets obtained in this fashion
differ greatly from one another, except from this peculiar viewpoint.

To put this dimension in perspective, note that
DML = DBL = logb′N + 1 − H = 1.86 and DMG = DBG = logb′′N + 1/H = 1.72, but
DG = 1.81. Nevertheless, Schertzer and Lovejoy 1986 give logb′N (without
explanation) as the only fractal dimension of this carpet.

In the limit case N = b′b′′, the main dimensions based on rectangles
simplify to 1 + 2/H locally and 2 + H globally. In retrospect, this last value
might provide an element of motivation for the “elliptic dimension.” But
this motivation is not an improvement of the motivation for the “twin”
value 1 + 2/H, which incidentally has a most undesirable feature: it is
unbounded.

Observe also that, to verify that this global 2 + H and this local 1 + 2/H
are useful dimensions, one must know in advance which boxes should be
used in the covering, which requires advance knowledge of H. Every
dimension based on the common square boxes can be measured by direct
algorithms. The expressions 1 + 2/H and 2 + H involve an indirect meas-
urement of H as the ratio of the measurable quantities GH and G. A less
contrived motivation would be welcome.

For coverings by rectangles, see also Section 2.5 of Chapter E23.

Acknowledgement: I undertook this work while teaching fractal geom-
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