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Earth's relief, shape and fractal dimension of
coastlines, and number-area rule for islands

•Chapter foreword. This is the first statement of my simplest fractal
theory of relief, which became widely popular. Earth's relief is so familiar
to anyone that there is no need here to refresh the reader's memory by
providing examples. Today, this paper is mainly of historical interest, but
a few points made here have not been restated anywhere else. •

 ✦ Abstract.  The degree of irregularity in oceanic coastlines and in ver-
tical sections of the Earth, the distribution of the numbers of islands
according to area, and the commonality of global shape between conti-
nents and islands, all suggest that the Earth's surface is statistically self-
affine. The preferred parameter, one which increases with the degree of
irregularity, is the fractal dimension D of the coastline; it is a fraction
lying between 1 (limit of a smooth curve) and 2 (limit of a plane-filling
curve). A rough Poisson-Brown stochastic model gives a good first
approximation of the relief by assuming that it is created by superposing
very many, very small cliffs, which are placed along straight faults, and
are statistically independent. However, the predicted relative area for the
largest island is too small, and the predicted irregularity for the relief is
excessive for most applications. The predicted dimension is D = 1.5, which
is, likewise, excessive. Several higher-approximation self-affine models are
described. Any model can be matched to the empirically observed D and
can link all observations together. But self-affinity must be postulated and
cannot yet be explained fully. ✦

ONE BROAD TASK OF GEOMORPHOLOGY is to differentiate two
aspects of relief that are best contrasted using electrical engineering termi-
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nology. (a) The first is a “signal,” defined as a reasonably clear-cut feature
that one hopes to trace to a small number of tectonic, isostatic or erosional
causes. (b) The second is a “noise,” defined as a feature that one believes
is due to many distinct causes that have little chance of being explained or
even disentangled. This paper is mainly concerned with the examination
of this “noise.”

The fit between the models and the empirical relationships that they
aim to represent will prove to be good. Its quality may even seem sur-
prising, since there was no objective way to know a priori whether the
relationships that it seeks to represent are indeed mostly noise-related. In
fact, even the simplest model will generate ridges, that one is tempted  a
priori to classify as signal-like. Thus, our study of noise will conclude by
probing the intuitive distinction between it and the signal.

The strategy used in this paper is, in part, very familiar, having
proved successful in taming the basic electric noises. In moving from
noises to relief, the first novel aspect (and a major difficulty) is that it
deals not with random curves but with surfaces. The second novel aspect
follows as a consequence of the first. Since an acoustic or an electric noise
is not visible (except, perhaps, as a drawing on a cathode ray tube),
geometric concepts do not enter in its study, except at a late stage and in
an abstract fashion. For the Earth's relief, the opposite is true. However,
ordinary geometric concepts are hopelessly underpowered here, implying
the need for new mathematics. For our purposes, remembering that the
Earth is roughly spherical overall would only bring insignificant cor-
rections. Therefore, we shall assume that, overall, the Earth is flat with
coordinates x and y.

 1. GOALS

 Quantified goals

To be fully satisfactory, a model of relief must explain the following rules
or concepts, each of which is a theoretical abstraction based on actual
observations. To be merely satisfactory, a model of relief must show at
least that these rules and concepts are mutually compatible.

(a) Korcak's empirical number-area rule for islands (Fréchet 1941)
states the relative number of islands whose area exceeds A is given by the
power-law Φ(A) ∼ A− K. A fresh examination of the data for the whole
Earth yields K ∼ 0.65. More local (and less reliable) estimates using
restricted regions range from 0.5 for Africa (one enormous island and
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others whose sizes decrease rapidly) up to 0.75 for Indonesia and North
America (less overwhelming predominance of the largest islands).

(b) A second concept states that, even though coastlines are curves,
their wiggliness is so extreme that it is practically infinite. For example, it
is not useful to assume that they have either well-defined tangents (Perrin
1913), or a well-defined finite length (references are given in M 1967s. Spe-
cific measures of the length depend on the method of measurement and
have no intrinsic meaning. For example, let a pair of dividers “walk”
along the coast; as the step length G is decreased, the number N(G) of
steps necessary to cover the coast increases faster than 1/G. Hence, the
total distance covered, L(G) = GN(G), increases without bound.

(c) Richardson's empirical rule asserts that N(G) ∼ G− D. In this relation,
the exponent D is definitely above 1 and below 2; it varies from coast to
coast, a typical value being D ∼ 1.3 (references are given in M 1967s).

(d) M 1967s proposes that it is useful, in practice, to split the concept
of the dimension of a coastline into several distinct aspects. Being a curve,
it has the topological dimension 1, but the behavior of L(G) suggests that
from a metric viewpoint, it also has a “fractal dimension” equal to
Richardson's D. Curves of fractional (Hausdorff) dimension have been
known for over half a century as an esoteric concept in pure mathematics,
but M 1967s has injected them into geomorphology. The notion of a fractal
dimension has also found applications in several other empirical sciences
(see M 1975f{H18} and M 1975O). Implicit in M 1967s was the further
concept that the surface of the Earth has the dimension D + 1, which is
constrained between 2 and 3.

(e) Vertical cuts of the Earth have been studied less thoroughly than
the coastlines, which are horizontal cuts, but a model of the Earth should
embody all that is known on their behalf (Balmino, Lambeck & Kaula
1973).

Subjective goals: resemblance in external appearance

Another property to be explained by a model of relief is obvious but not
easy to quantify. Roughly speaking, it is difficult to distinguish between
small and big islands, unless one either recognizes them or can read the
scales. One possible explanation argues that the determinants of overall
shape are scaleless, and hence are not signals but rather noises. In fact,
many islands look very much like distorted forms of whole continents,
which is perhaps too convenient to be true. Why should self-affinity
extend to the tectonic plates?
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Thanks to advances in computer simulation and graphics, there is a
new test of the validity of a stochastic model. It need no longer be tested
solely through the quality of fit between predicted and observed values of
a few exponents. It is my belief (although perhaps a controversial one)
that the degree of resemblance between massive simulations and actual
maps or aerial views must be accepted as part of scientific evidence.

 2. STRATEGY

First strategy: an explicit mechanism, its limit behavior and the concept
of self-affinity

Our first strategy is the one used to explain thermal noise in electric con-
ductors through the intermediary of shot noise, which is the sum of the
mutually independent effects of many individual electrons. The analogous
“Poisson-Brown” primary model of the Earth has isotropic increments. It
is simple, explicit, direct and intuitive, and, in general terms, fulfills the
goals that were listed. In particular, it predicts that coastlines are not
rectifiable, that the above power laws are valid and that D must be greater
than 1. In fact, the relief that it yields is self-affine.

This last concept quantifies the first subjective goal listed above. It
indicates that the altitude Z(x, y) has a property of spatial homogeneity
that can be expressed as follows. Select the origin of coordinates so that
Z(0, 0) = 0, and pick an arbitrary rescaling factor h > 0. Self-affinity postu-
lates that Z(hx, hy) is identical in statistical properties to the product of
Z(x, y) and some factor f(h). Unfortunately, the predicted value D = 1.5 is
not satisfactory. No single value can represent the relief everywhere, and
most observed values are well below 1.5. This discrepancy is confirmed by
the excessively irregular appearance of the simulated primary relief and
coastlines.

Second strategy: self-affinity and the use of limits

The Poisson-Brown model must be improved upon, for both numerical
and perceptual reasons. To do so, one must unfortunately resort to a
strategy that is indirect, more complex, less powerful and less convincing.

First postulate. Without attempting to describe any specific mechanism,
we preserve the assumption that the noise element in the relief is the sum
of many independent contributions. It follows, for example, that the incre-
ment Z(P′) − Z(P′′) between the two points P′ and P′′, must belong to a
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very restricted family of random variables. In addition to the Gaussian,
this family includes other members (so far, ill-known in the applications;
see below).

Alternative postulate. We adopt the self-affinity of the relief as an excel-
lent quantification of our first subjective goal and, hence, as a summary of
many quantified goals. Even after self-affinity is assumed, the identifica-
tion of an appropriate Z(x, y) continues to pose a challenge. We shall
examine several possibilities, discussing them in order of increasing com-
plication, and shall show that they fulfill our various goals in a way that
relates them to each other.

3. POISSON AND BROWN SURFACES

Spatial construction patterned on Poisson shot noise

Start with an Earth of zero altitude, then break it along a succession of
straight faults and displace the relief vertically on one side of each fault to
form a cliff. At this stage, the terms “fault” and “cliff” are to be under-
stood in purely geometrical terms, with no tectonic implication. The
resulting relief is denoted by ∏(x, y). It is convenient to choose an origin
(0, 0) and to maintain ∏(0,0) = 0, but changing the origin only adds a con-
stant to ∏(x,y). (This model obviously neglects the basic roles of isostasy
and of erosion.)

The positions of the faults and the heights of the cliffs are assumed
random and mutually independent, the former being isotropic with a high
average density and the latter having zero mean and finite variance
(implying that large values are very rare). A computer simulation is
exhibited in Figure 1, showing a perspective view of the relief, and in
Figure 3B, showing a larger piece of coastline. The primary relief has
already been described as self-affine with D = 1.5. Let us now examine its
quantitative properties individually.

 Vertical cuts

Isotropically random and mutually independent faults have the following
property, which is useful to characterize them. Their points of intersection
with a straight line (parameterized by u) form a Poisson point process
∏(u). The angles of intersection are distributed uniformly between 0 and
2π. Denote the average number of points of intersection per unit length by
λ. Each primary vertical cut is a Poisson random walk. It differs from an
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ordinary random walk because the instants when it moves up or down are
not uniform in time but follow a Poisson distribution.

Limit vertical cuts

Divide ∏(u) by λ1/2, which rescales the cliff heights to make them
decrease as their number increases; then let λ → ∞. As is well-known, the
distribution of the Poisson steps in this limit becomes increasingly irrel-
evant. By the central limit theorem, ∏(u)λ− 1/2 tends to a Brownian
motion B(u).

This limit is a continuous process, meaning that even the highest con-
tributing cliff contributes negligibly to the sum. The overall resemblance
between Brownian motion and real vertical sections was pointed out in M
1963e{E3 } (p. 435). It is likely that other authors have noted it earlier, but I
have not found any references to that effect. This result is confirmed by
spectral analysis (Balmino, Lambeck & Kaula 1973).

FIGURE C19-1. Perspective view of a sample of a Brownian surface of Paul Lévy.
A flat surface at sea level is included to enhance the detail.
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 Relief

Z = ∏(x, y) can be called a Poisson surface, and Z = B(x,y) is called a
Brownian surface by mathematicians. It was defined in Lévy 1965
through the characteristic property that, for every two points P′ and P′′,
B(P′) − B(P′′) is a zero-mean, Gaussian random variable of variance
 
 
P′P′′ 

 2H
, with H = 0.5. B(x, y) is self-affine with the scaling factor

f(h) = h1/2. Until the present application, it was known simply as a math-
ematical curiosity. Its use as a model could have been introduced directly
and dogmatically as just another instance of the oft-successful tactic, which
approaches every new statistical problem by trying to solve it using the
simplest Gaussian process. However, the detour through Poisson faults
improves the motivation.

 Coastlines

An island is defined as a maximal connected domain of positive altitude.
A coastline, being simply a horizontal section of the relief, has the same
degree of irregularity as a vertical section. The coastline of a Brownian
island has infinite length, however small its area A; for a Poisson island of
area A�λ− 2, one has N(G) ∼ G− 1/2λ1/2. In either case, when G�λ− 2, one
has N(G)− 1.5.

The number-area rule for islands

For islands defined through B(x, y) ≥ 0, one has Φ(A) = A− 3/4 for all values
of A. For islands defined through ∏(x, y) ≥ 0, one has Φ(A) = A− 3/4 for
A�λ− 2.

4. ANISOTROPIC STRETCHING AND ADDITION OF SPECTRAL
LINES

A striking feature of sample Brownian surfaces (see Figure 1) is the invari-
able presence of clear-cut ridges. While they are merely an unexpected
consequence of continuity, their presence expresses that each sample is
grossly non-isotropic. Since these ridges have no privileged direction,
they are quite compatible with the isotropy of the mechanism by which
B(x, y) is generated. If we did not know that they are expressions of noise,
we might say that they are signals. That is, if we did not know that they
are due to the superposition of many effects, we might try to explain them
by some single cause.
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Nevertheless, they are far from being as regular as either the
Appalachians or the Andes, which are profoundly nonisotropic. We shall
list two simple accounts for their occurrence by invoking “signals” super-
posed on a primary “noise.”

First signal. This approach consists in a controlled degree of
anisotropy introduced into either ∏(x, y) or B(x, y). One may, for example,
make the probability of faults greater along some direction than along its
perpendicular direction. Alternatively, one can stretch the plane. Either
change will make our ridges tend to become parallel to each other and to
form mountain ranges; by adjusting the degree of stretching, the overall fit
can be improved. In both cases, the values of the Korcak parameter K and
the Richardson parameter D would remain unchanged.

Additional signal. A different approach to the problem of non-isotropy
is best explained in spectral terms. The spectrum of B(P) is continuous,
with a density proportional to ω− 2. Just as in communication technology,
the signal may be assumed to take the form of a pure spectral line. This
assumption would induce sinusoidal up- and down-swells in the relief,
thus creating a tendency towards parallel ridges.

V. FRACTIONAL BROWNIAN RELIEF

The most satisfactory model, among those currently available, combines
either of the above signals with the noise we are now going to define.

A Gaussian secondary model with either 1 < D < 1.5 or 1.5 < D < 2

We now adopt a second strategy and assume that Z(x, y) is a Gaussian
surface, meaning that for any set of points Pn(0 ≤ n ≤ N), the
N-dimensional vector of coordinates Z(xn, yn) − Z(x0, y0) is Gaussian. The
combination of isotropy of the increments with self-affinity requires Z(x, y)
to be proportional to either the above Brownian function B(x, y) or a gen-
eralization, which I propose to call a fractional Brownian function and to
denote by BH(P).

This generalization is defined by E{BH(P′) − BH(P′′)}2 = P′P′′
2H

, with
0 < H < 1/2 or 1/2 < H < 1. In the special case H = 1/2, one has
BH(P) = B(P). The fractional Brownian function of time has served the
author in modeling a variety of natural time series (M & Van Ness
1968{H11}). The present multiparameter BH(P) has been mentioned
fleetingly in the literature (references are given in M 1975O), but here it
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FIGURE C19-2. Several perspective views of a sample fractional Brownian surface
for H = 0.7 drawn using the same random generator seed as used in Figure 1.
Letting the sea level recede, further enhances the shape of the relief. The
value of H = 0.7 used in this figure gives the best fit from all viewpoints.
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can be applied. Selected simulations are illustrated in Figures 2, 3a, and 3c.
To satisfy our numerical goals with any desired D, it suffices to select
H = 2 − D. If D ∼ 1.3 and H ∼ 0.7, the subjective goal of familiarity of
appearance is fulfilled also.

We end with the Korcak exponent K. Its theoretical value is K = D/2
(meaning that the distribution of the typical length A1/2 is hyperbolic with
the exponent D). The single Earth-wide estimate K ∼ 0.65 is a compromise
between different regions, and indeed fits the world-wide compromise
D ∼ 1.3. Local estimates for Africa and Indonesia also fit the local estimates
of D, and the empirical relationship between D and K seems to be
monotonically increasing. This feature, if confirmed, would provide an
unexpected link between the local and global properties of the relief in dif-
ferent areas of the Earth. This is an interesting topic for further study.

After-the-fact partial rationalization of BH(P)

There are at least two approaches to rationalize BH(P) each of which is
more reasonable in different regions of the Earth.

First method. Note that the spectrum of BH(P) is continuous with a
density proportional to ω− (2H + 1). When H > 0.5, it differs from the ω− 2

spectral density of B(P) by being stronger in low frequencies and weaker
in high frequencies. The replacement of B(P) by BH(P) could be viewed as
due to another signal. Its overall effect tends to smooth; its local aspects
could easily be associated with erosion, while its global aspects may relate

FIGURE C19-3. Several coastlines defined as the zero level lines of fractional
Brownian surfaces. They correspond to the same random generator seed but
different values of H, namely, H = 0.7, H = 0.5 (a Brownian surface), and
H = 0.1.
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to isostasy. The fact that D varies around the globe, a fact for which we
have not yet accounted, would result from local variability in the intensity
of such erosion. However, none of the common methods of smoothing,
such as local averaging, is sufficiently effective because each affects only a
narrow band of frequencies. The smoothing required here must involve a
very broad band; therefore, it would necessarily combine a wide collection
of different narrow-band operations. In addition, their relative importance
should take a very specific form.

Alternative method. One may obtain BH(P) directly (this approach is
used and is described in M 1975f{H18}) by resorting to cliffs with a special
kind of profile. They must rise very gradually but do so forever on both
sides of each fault.

6. A NON-GAUSSIAN SECONDARY MODEL

BH(P) gives a surprisingly good phenomenological description of the relief.
But its continuity implies that it will not fit some data. However, disconti-
nuity, if required, is within easy grasp. It suffices to proceed to random
surfaces that follow one of the non-Gaussian distributions that may apply
to sums of many independent addends, namely, a stable distribution of
Paul Lévy. They can be injected into the Poisson model (see above) if cliff
heights are assumed to have an infinite variance and to fulfill other
requirements. The resulting Poisson-Lévy model cannot be described
here. It suffices to say that the largest contributing cliff no longer becomes
relatively negligible as the number of contributions increases, but con-
tinues to stand out. Without question, we will be tempted to interpret it
as a signal.

 7. GENERALIZATIONS

The above models are closely related to some recent work in turbulence
and have many other fairly immediate applications. They are readily
translated to account for such phenomena as the distribution of minerals
and oil.



H19  ♦ ♦ EARTH'S RELIEF 401

&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

A footnote in the original text. A referee, expressing an opinion that may
be shared by other readers, criticized my approach for “a narrow focus on
purely tectonic processes of the simplest kind and a belief that (i) it is both
good and important to make stochastic models whose realizations agree
with the largest scale behavior and (ii) if this can be done, it is right and
wise to think of these largest scale phenomena as in fact stochastic.” To
respond, I plead guilty: while the validity of models of the kind that I
shall describe must eventually be discussed with great care and skepti-
cism, I see only benefits in first developing them in some detail.

How this paper came to be written. This story is told in Section 4.5 of
Chapter H8.


