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Geometry of homogeneous scalar turbulence:
iso-surface fractal dimensions 5/2 and 8/3

•Illustrated chapter foreword. The photograph below, taken by M.P.
Doukas and reprinted courtesy of the United States Geophysical Survey, is
discussed on the next page.
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An exception in this book, the preceding page reproduces an actual photo-
graph of a natural event: Mt. St. Helens after its top blew off. In
vulcanology, the practical challenge is to predict eruptions and the dream,
to control them. The scientific challenge is to explain every quantitative
observation and reduce all scientific and practical predictions to the status
of corollaries. While all those worthy challenges continue to be pursued,
an intermediate pragmatic challenge is to describe what is observed and
perhaps achieve at least a taxonomy of volcanic events.

An eye attuned to fractals recognizes in the preceding page a col-
lection of billows upon billows upon billows – a textbook example of
fractality. About those whose eye is innocent of fractals, one may wonder
who organizes the evidence better, the “layman” or the typical quantita-
tive scientist, namely, a person selected and exclusively trained on the
basis of skills in algebra and analysis?

During the centuries before photography, Italy left an abundant picto-
rial representation of volcanoes that can be sampled in Scarth 1999. Few
great artists were involved and the early pictures look crude and some
look unrealistic and/or atypical. But one of Scarth's figures subdivides
every billow of every “billowing” level into 2 by 2 smaller ones.

The result presents an uncanny kinship to a cartoon of reality con-
strained to an almost regular 2 by 2 grid. The painter's eye, brain and
hand contribute to each picture in ways one cannot separate. It is rather
fascinating to find that a journeyman painter of long ago simplified actual
billowing by recursive interpolations, in the same way as twentieth
century high mathematicians.

The representations of volcanoes impact a very important theme
which this book often mentions but cannot develop. Following my
teachers, I used to believe and repeat that fractals were “invented” circa
1900 as mathematical monsters. Had this notion been historically correct,
it would have been hard to understand how the practically non-existent
popular response to the monsters changed over a few years to a highly
positive popular response to fractal geometry.

In fact, the notion that fractals are a hundred years old and were
invented by mathematicians is emphatically disproved by history, as
sketched in Section 1.5 of Chapter H8. One should now view fractals as
dating back to the dawn of humanity and having moved from art back to
art, through mathematics, finance, and a multitude of sciences. Now,
every properly alerted person recognizes many unmistakable traces of
informal fractality eveywhere – for example in old paintings of volcanoes.
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Be that as it may, awareness of fractals used to be wholly informal
and haphazard, but today the eye can be trained so that the Mt. St. Helens
picture evokes fractality without question or delay. •

 ✦ Abstract.  This paper studies several geometric aspects of Poisson and
Gaussian random fields that approximate Burgers k− 2 fields and
Kolmogorov k− 5/3 homogeneous turbulence. Model scalar iso-surfaces
(e.g., of constant temperature or concentration) are illustrated, and their
relative degrees of wiggliness are shown to be characterized best by fractal
dimensions equal to 3 − 1/2 (Burgers) and 3 − 1/3 (Kolmogorov). ✦

TURBULENCE IN FLUIDS RAISES A VARIETY OF PROBLEMS of
geometry. They are important but so far have not received the full atten-
tion they deserve.

 1. INTRODUCTION

The theory of stochastic processes (greatly influenced – through N. Wiener
– by Perrin's work on Brownian motion and G. I. Taylor's early papers on
turbulence) grasped fully the peculiar and “pathological” shapes of ran-
domly generated lines and has either borrowed or developed analytic and
geometric tools to describe this kind of irregularity. But geometry (in con-
trast to analysis) has hardly been applied to the specific random surfaces
of turbulence. This failure is particularly surprising because turbulent
shapes are readily visualized and, therefore, almost cry out for a proper
geometrical description.

The present paper is one in a series that I am devoting to this goal. M
1972j{N14} and M 1974f{N15} dealt with intermittency. The present work,
which can be read independently, returns to a more traditional context
and investigates certain geometric aspects of the random fields of the
classic theory of homogeneous turbulence (Kolmogorov). More precisely,
we shall study two approximations. The more familiar approximation is
the zero-mean random Gaussian field, for which the variance of the incre-
ments obeys the 2/3 law. The less familiar approximation, to be called a
Poisson field, can be viewed also as a (new) algorithm designed to simu-
late the above Gaussian field on a computer. The elementary steps of this
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algorithm may seem to have a possible concrete interpretation in terms of
“shocks” but are in fact mere mathematical devices.

To give an idea of the geometry, we exhibit actual simulations of the
iso-surfaces of scalar quantities, such as the surfaces of constant temper-
ature, and comment on their shapes. We stress the fact that in the case of
Gaussian fields the iso-surfaces are convoluted to such an extraordinary
extent that it is best to consider them as lying “in-between” ordinary sur-
faces and solids and, more precisely, as having a dimension equal to 8/3.
Similarly, although in this case the proof is as yet incomplete, it appears
that the four-dimensional Euclidean graph of the function giving the tem-
perature at a point has a dimension equal to 11/3.

The concept of a fractional (Hausdorff) dimension has been known in
pure mathematics for over half a century, a good reference being Rogers
1970. It is particularly potent in describing the fine structure of random
functions. However, it remained a little-known curiosity, even among
mathematicians. No concrete application was suspected until it was
injected systematically into natural science, first through the study of
certain noises (M 1965c{N7}), then through the shape of the earth's surface
(M 1967s), and ultimately through the study of turbulence (M 1972j{N14},
1974f{N15}). No presentation directed towards scientists was attempted
until recently (M 1975o), and its range of application is far from having
been exhausted. For reasons I cannot describe here, the corresponding
sets can be called fractals and the term “fractional dimension” is best
replaced by “fractal dimension.” Applications of fractals to turbulence are
described in M 1976c{N19}, M 1976o{N18} and Scheffer 1975.

For the sake of clarity, the argument will be carried out first for the
corresponding Poisson and Gaussian approximations to Burgers homoge-
neous “turbulence;” this is extremely crude as a model, but it is much
simpler and, hence, provides useful insight into reality. The fractal dimen-
sion of Burgers iso-surfaces is 2.5.

The discussion includes an application of another concept which was
once considered to be a mathematical curiosity. A scalar Burgers Gaussian
field, we shall discover, is identical to Lévy's 1948 independently devel-
oped concept of a “Brownian function” in space; by analogy, we shall
propose for the scalar Kolmogorov Gaussian field the term “fractional
Brownian function.”
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2. THE GEOMETRY OF RANDOM SCALAR FIELDS WITH BURGERS
VARIANCE AND POISSON AND GAUSSIAN DISTRIBUTIONS,
THAT IS, BROWNIAN FUNCTIONS OF A POINT

In the one-dimensional Burgers model, turbulence has a spectral density
proportional to k− 2. At least since von Neumann 1963, it has been cus-
tomary to apply the term “Burgers turbulence” to a collection of step-like
discontinuities in three dimensions. We shall first study a scalar turbulence
field, such as the temperature B(P) at the point P or the concentration of
an inert contaminant (see Corrsin 1951). For two points P′ and P′′ in a
Burgers scalar field, 

〈
[B(P′) − B(P′′)]

〉
= 0 and 

〈
[B(P′) − B(P′′)]2

〉
= P′P′′ .

2.1. Poisson fields

A precise mathematical model of a Burgers field is the Poisson field. This
field results from an infinite collection of “steps” (for example, of temper-
ature) whose directions, locations and intensities are given by three infinite
sequences of mutually independent random variables. The locations can be
determined by the distances from the planes carrying the steps to the
origin 0. These distances must form a Poisson sequence of positive
numbers Rn. By definition, a Poisson sequence of inverse density µ is such
that the probability of finding at least one point between R ≥ 0 and
R + dR ≥ 0 is dR/µ. The directions of these planes can be determined by
the altitudes drawn to them from O, and must be given by a sequence of
points Hn on the unit sphere on which the probability of finding a point
Hn in any domain of area dS is dS/4π. Finally, the amplitudes can be
represented by a sequence of random quantities Qn that are arbitrary
except that they have a symmetric distribution and a finite variance 

〈
Q2

n

〉
,

which will be assumed to be normalized to unity.

Because
〈
Q2

n

〉 
= 1,

〈
Qn

〉
is necessarily finite and because the distribution

is symmetric, the quantity 
〈
Qn

〉
 must vanish. Thus to each n there will

correspond a point Vn, a plane Πr and a function Dn. The point Vn is such
that OVnRn = OHn, that is, the plane is perpendicular to OVn through Vn.
The plane is the locus of all points P such that OP .OHn = Rn. Finally, the
function DnF(P) vanishes where OP .OHn < Rn (in particular, at the point
O); this function equals Qn when OP .OHn > Rn and equals Qn/2 when
OP .OHn

 
= Rn. Because of this last property and the symmetry of the dis-

tribution of Q, the distribution of DnF(P) is isotropic. Note also that, even
if Q is Gaussian, the joint distribution of two or more values of DnF(P) is
not Gaussian; hence, DnF(P) is never a Gaussian field. Adding all the con-
tributions DnF(P), one defines a Poisson field as
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F(P) = �
∞

n = 1

DnF(P).

The above construction involves a specific origin O, but it is easy to
see that the distribution of the planes of discontinuity remains invariant as
O is displaced. Therefore, the field F(P) is also invariant, in the sense that
the distribution of F(P′) − F(P′′) for any two fixed points P′ and P′′ is
invariant. In particular, the number of planes of discontinuity intersecting
any bounded domain is almost surely finite. When this domain is an arbi-
trary segment P′P′′, the number of intersecting planes is a Poisson random
variable of expectation λ P′P′′ , with λ proportional to µ; as Burgers
wanted,

〈
F(P′) − F(P′′)

〉 
= 0 and

〈
[F(P′) − F(P′′)]2

〉 
= λ 

 
P′P′′

  
.

The fact that F(P′) − F(P′′) is affected only by “local” planes (defined as
those which intersect P′P′′) expresses that this field is local, in one sense at
least; but the matter of local versus global properties also has other
aspects, to which we shall return in Section 4.

The probability distribution of a scalar Poisson field is not universal
but depends on the distribution of Q. For example, unless Q itself is
Gaussian, the probability distribution of F(P) − F(O) depends strongly
upon the number of contributing terms DnF(P) and hence upon the value
of  

 
OP

  
. For large  

 
OP

  
, the central limit theorem applies, and

F(P) − F(O) tends to a Gaussian distribution irrespective of the distribution
of Q. To the contrary, for small OP , F(P) may have a variety of shapes.

2.2. Brownian fields

Von Neumann 1963 (p. 450) asserts that “It would appear that the Burgers
approach describes a fixed number of shocks of fixed size correctly, but it
seems questionable whether its conclusions still apply to an asymptotically
(with time) increasing number of (individually) asymptotically weakening
shocks. Yet, this is probably the pattern of hydrodynamical shocks in
those cases where they combine with turbulent motion.”

It is not clear which “conclusions” von Neumann had in mind, but the
mathematical construction of a field made of such shocks is possible.
Indeed, Lévy 1948 defined the scalar Brownian function B(P) of a point P
as the scalar Gaussian field such that
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〈
B(P′) − B(P′′)

〉 
= 0 and

〈  
B(P′) − B(P′′) 

 2〉 
=

 
P′P′′

  
.

This field B(P) is the (unique) Gaussian interpolate of a Burgers field.
In addition, one can relabel the Poisson field defined in Section 2.1 as
F

λ
(P), and show that the Burgers field B(P) is the limit for λ → ∞ of the

infinite sequence of Poisson fields λ− 1/2F
λ
(P). This limit process imple-

ments fully the notion of an increasing number of increasingly weak dis-
continuities. (The concept of the limit of a random field has many different
aspects. In this case, it suffices that, for any set of points Pn, the probability
distribution of the vector with coordinates λ− 1/2F

λ
(Pn) should converge to

the probability distribution of the vector with coordinates B(Pn).) Con-
versely, the possibility of defining B(P) through this limit process elimi-
nates the artificiality (underlined by Lévy) that has characterized earlier
methods for generating B(P), and it yields a method (not known to Lévy)
for performing computer simulations.

A Brownian field is extremely irregular, but this fact cannot be illus-
trated directly, because we cannot draw four-dimensional graphics.
However, such a field's planar or linear sections are well-known and of
independent interest. M 1975w{H19} and M 1975O propose the function
B(x, y, 0) as a crude model of the earth's surface and the section along the
x-axis reduces to Wiener's Brownian motion B(x, 0, 0). However, even
more illustrative of B(P) is the structure of its iso-sets B(P) = constant, as it
is fully exemplified by the set B(P) = 0.

2.3. Poisson iso-surfaces

For a continuous function G(P), an iso-surface is a set of points where G
assumes the same value. However, this concept does not apply to F(P),
because it is not continuous. It follows, for example, that the points where
F(P) = 0 reduce almost surely to a small volume around O, bounded by a
finite number of planes of discontinuity.

However, one may well choose to extend the definition of the iso-set
F(P) = 0 to include all the points which have both a neighborhood where
F ≥ 0 and a neighborhood where F ≤ 0. If so, the iso-set almost surely
includes a surface composed of an infinite number of small bounded
pieces of the plane. In addition, it includes the previously mentioned small
volume near O. Alternatively, if the constant C is chosen at random with a
continuous distribution, the iso-set F(P) = C is simply a surface.
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FIGURE C18-1. Four successive slices of a computer-generated approximation to
the volume B(P) > 0, where B(P) is the Gaussian approximation to a Burgers
scalar field at a point P in space. Clearly, these drawings are much too
smooth to represent actual turbulence (see Figure 2), but it has not escaped the
author's attention that they are reminiscent of various portions of the earth's
surface: Greece, the Sea of Okhotsk (as seen in a mirror), the Gulf of Siam or
perhaps Western Scotland. In other publications, the author has shown that,
while such a resemblance is in no way unusual, many other parts of the world
are smoother and require a fractional Brownian model with a larger value of
H than either the Burgers or the Kolmogorov models of turbulence. Note that,
although the black and white regions are identical in their statistical proper-
ties, the white one is by far the larger. The above graphs do not include the
“empty” portions of the square slices.
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 2.4. Cutoffs

When one takes viscosity into account, the discontinuous functions Dn(P),
the Poisson field and the limiting Brownian field B(P) have no physical
meaning. Nevertheless, the fine structure of B(P) is very interesting, and
even more interesting is the fine structure of the Gaussian field B∼(P) with
Kolmogorov variance (see Section 3). We hope, of course, that this fine
structure is not due entirely to the use of the Gaussian approximation, but
(being unable to tell) we choose not to worry about this. Even in cases
where the fine structure corresponds to inaccessible asymptotics, it is
useful to know it, because it simplifies and clarifies the fine structures
above the cutoff. Such was the opinion of Perrin (whom we shall soon
quote on a related matter) concerning the importance of the fine structure
of Brownian movement.

In addition, the Brownian field B(P) has an infinite external scale,
which may be physically unrealistic, but is very difficult to change
without profoundly modifying the model.

2.5. Brownian iso-surfaces

The field B(P) is continuous so that the set B(P) = 0 is a continuous surface
and its statistical structure and shape are characteristic of all the iso-
surfaces B(P) = constant. Figure 1 shows several successive “slices” of an
approximation to the set B(P) = 0, constructed on the basis of a special
Poisson field F(P) such that Qn follows an approximation to a Gaussian
distribution. The values of B(P) were first evaluated over a spatial grid of
513 points. Then, because no standard computer routine was available for
spatial interpolation, smooth interpolates of the lines where B(P) = 0 were
drawn separately for each horizontal planar grid of 512 points. Hence, the
smoothness of the line drawn in each of these planes is an artifact. The
discontinuities seen between the different planes are also artifacts for the
same reason. The main feature of the limit field B(P) is that it is isotropic
and has no intrinsic scale at all. Therefore, the local detail seen on the sur-
faces B(P) = 0 should be disregarded and replaced by mentally interpo-
lating reduced-scale versions of what we see of the medium-sized and
large-detail. The result is extremely (in fact, infinitely) irregular: the
biggest visible piece is surrounded by blobs, jetsam and flotsam of all
shapes and sizes and by “negative image” versions that are scattered in its
interior. In addition, the outside branches out into filaments of every kind
penetrating the inside, and conversely.
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A special hindrance to intuition is that, since the distribution of B(P) is
symmetric, the zones where B(P) > 0 and B(P) < 0 are statistically identical
in their geometric properties. Nevertheless, the notion that a shape can be
qualitatively identical to its complement is not as difficult to comprehend
as it might seem. This is especially true in the present case. Although the
regions B > 0 and B < 0 have identical expected volumes, the volumes
actually observed in a sample (more precisely, those of the intercepts of
these regions with a large sphere of center O) may be quite different.

 Digression.  It is interesting, at this point, to quote an excerpt concerning
colloids from the preface of a classic book, Perrin 1913.

“Consider one of the white flakes that are obtained by salting a soap
solution. At a distance its contour may appear sharply defined, but as
soon as we draw nearer its sharpness disappears. The eye no longer suc-
ceeds in drawing a tangent at any point on it; a line that at first sight
would seem to be satisfactory, appears on closer scrutiny to be perpendic-
ular or oblique to the contour. The use of a magnifying glass or micro-
scope leaves us just as uncertain, for every time we increase the
magnification we find fresh irregularities appearing, and we never succeed
in getting a sharp, smooth impression, such as that given, for example, by
a steel ball.”

A very reasonable implementation of what Perrin had in mind seems
to be provided by the surface B(P) = 0. The surface B∼(P) = 0 of Section 4
might be even better. Furthermore, the analogy may well go beyond mere
geometry; it may be that (a) Perrin's flakes fill the zones where some
threshold of concentration of soap is exceeded, and that (b) the said con-
centration is a manifestation of very mature turbulence.

2.6. Rectilinear cross-sections of the Poisson and Brown iso-surfaces

First, the plane cross-section of B(P) = 0 is an iso-line of B(x, y, 0) = 0. Thus,
it is an ocean-level line of a crude image of the earth's surface, that is, it is
a crude image of an ocean coastline (M 1967s, 1975w{H19}). Next, the
rectilinear cross-section of B(P) = 0 is the set of zeros of ordinary Brownian
motion. Similarly, the rectilinear cross-section of F(P) = 0 in a Poisson field
is the set of zeros of a Poisson process. Both sets barely differ from the
zeros of a random walk. For an example, the reader is referred to Feller
1950 (Vol. 3rd edition), which includes an illustration (Chap. III, Figure 4)
and a discussion (Section III.6). The zeros' most striking feature lies in
their strongly hierarchical nature: they come in clusters, which combine
into super clusters, then in turn into super-super-clusters, and so forth, ad
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infinitum. As one views the whole ever more closely, fine detail that
seemed like a smooth piece of surface gradually decomposes into many
separate folds; correspondingly, what seemed like an isolated intersection
of a smooth surface and a line decomposes into many distinct points. As
one comes closer to any of the folds, the same process repeats again and
again. In the case of a Poisson field, the process is finite, but in the case of
a Brownian field, it is endless; increasingly finer folds are continually
revealed. Finally, in a Poisson or Brownian field that has been smoothed
to take viscosity into account, a finite number of steps leads to a surface
that has neither flat portions nor bends.

2.7. The Burgers iso-set B(P) = 0 is fractal and its dimension is 2.5

Our intuitive feeling for geometric shape has been developed by the study
of patterns that are enormously simpler than the ones we are now investi-
gating, such as threads and veils or, to use the terminology of Kuo &
Corrsin 1972, “blobs, rods, slabs and ribbons.” We therefore experience
great difficulty in comprehending and labelling patterns that are extremely
irregular. For example, the set B(P) = 0 is, intuitively, more “space-filling”
than an ordinary surface or veil but of course is less “space-filling” than
an ordinary solid. Let us now demonstrate that the loose notion of
unequal degrees of filling can be made more rigorous, and at the same
time can be strengthened, by showing that it can be measured by a single
number D < 3, to be called a “fractal” (sometimes “fractional)” dimension.
This concept (as we have already stated) has been featured in several
papers concerning the intermittency of turbulence, but the results obtained
in those papers are not required in order to follow the present argument. I
even believe that acceptance of the concept of D will be promoted if the
present discussion abstains from referring to earlier applications. Also, to
minimize the technical difficulty, we shall adopt an approach that is some-
what unusual and admittedly controversial. Among many near-identical
definitions of D, we shall pick one that is both intuitive and conducive to
a very direct proof.

Let us select in an “appropriate fashion” (see below) a large, test cube
in space, whose side L will be the external scale. Then subdivide it into
(L/η)3 small cells, whose side η will be the internal scale. Finally, count
the number N(L, η) of cells that include at least one point where B(P) = 0.
When one proceeds in this fashion with an ordinary curve – that is, a
curve having a well-defined length – it can happen that the curve and the
test cube do not intersect, in which case N(L, η) = 0; such cases are without
interest. In other words, the appropriate test cubes are those which actu-
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ally intersect the object being tested, and for them one finds that N(L, η) is
about L/η (the meaning of “is about” need not be discussed here). Simi-
larly, if a test cube is chosen such that it intersects an ordinary surface,
N(L, η) is about (L/η)2. Finally, with an ordinary solid, the appropriate
N(L, η) is about (L/η)3. The exponents are the Euclidean dimensions.

However, with the pattern of points B(P) = 0, we shall prove in a
moment that 

〈
N(L, η)

〉
= (L/η)2.5; thus, by analogy with the above role of

the Euclidean dimension, one may call D = 2.5 the dimension of our
pattern. It falls below 3 by an amount equal to H, where the variance of
B(P′) − B(P′′) is  

 
P′P′′

  2H
. Let us mention in advance that in the

Kolmogorov model, to be discussed in Section 3, the corresponding
dimension will follow the same general rule; hence, it will be found to be
equal to D = 8/9 = 3 − 1/3. The amount by which this value exceeds 2 is
greater than that amount for the present D = 2.5, and indeed the pattern is
more extremely convoluted.

Return to the field B(P). In four-dimensional Euclidean space, Yoder
1974 (first part of the theorem in the appendix) showed that D = 3.5 for the
set of points [x, y, z, B(x,y,z)]. Thus, here (in all non-pathological cases of
which the author is aware) the fractal dimension exhibits the same
behavior under intersection as a Euclidean dimension: it exceeds the
dimension of the iso-sets by one.

2.8. Proof that the set B(P) = 0 has a well-defined fractal dimension D

In this subsection we shall prove that there exists a constant D such that〈
N(L, η)

〉 
∼ (L/η)D. This argument will remain valid in Section 3. In the

next subsection we shall prove that in the Burger's case D = 2.5.

For the first part, we take a non empty cube, and write 
〈
N(L/η)

〉
 as

the product of two terms: the total number of cells (L/η)3, and the condi-
tional probability f(L, η) of a cell being non empty. The probability f(L, η)
is obviously a function of L/η because of the self-similarity (scalelessness)
of the overall definitions. Let us show that it must in fact be of the form
(L/η)D − 3. Pick two ratios r1 and r2, and consider a cell of side η1 = r1L and
a subcell in it of side η2 = r1r2L. One has:

Pr {subcell being non-empty if one knows that the cube is non-empty}
= Pr {subcell being non-empty if one knows that the cell is non-empty}
× Pr {cell being non-empty if one knows that the cell is non-empty}.

Hence,
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f(L, r 1r 2L) = f(r 1L, r 1r 2L)f(L, r 1L).

By iteration,

f(L, rnL) = [f(L, rL)]n.

Since rnL = η, this yields

log f(L, η) = n log f(L, rL) = log (L/η) log f(L, rL)/ log (1/r).

Denoting log f(L,rL)/ log (1/r) by 3 − D, we prove that
f(L, η) = (L/η)3 − D for certain L and η; the desired result follows by a well-
known interpolatory argument.

2.9. Outline of a proof that D = 2.5 in the Burgers case

Consider a vertical stack of cells of side η within the large cube, and des-
ignate by N1(L, η) the number of those cells which intersect B(P) = 0. It is
not hard to believe, and we shall assert it without proof, that the condi-
tional probability distribution of this number, knowing that N(L, η) > 0, is
the same for every stack; the same is true of its probability of being non
zero. Since there are (L/η)2 such stacks, we see that〈
N(L, η)

〉 
= (L/η)2

〈
N1(L, η)

〉
. Therefore, the result we wish to prove now

takes the form 
〈
N1(L, η)

〉
∼ (L/η)0.5. Next, replace N1(L, η) by a variant

defined as follows. First, draw a “central line” through the centers of all
the cells of side η in our stack, where this central line consists of L/η seg-
ments of length η. Second, count the number N∼1(L, η) of cells that contain
at least one point where B(P) = 0. The function B(P) being continuous, we
can safely believe that 

〈
N1(L, η)

〉
 differs from 

〈
N∼1(L, η)

〉
 only by a random

factor of the order of unity, independently of L and η.

Moreover, one can write 
〈
N∼1(L, η)

〉
 as the product of two factors: (a)

the probability that N1 > 0 and (b) the conditioned expectation of N∼1, to be
denoted by 

〈〈
N∼1(L, η)

〉〉
, which is computed by considering only the stacks

within which N∼1 does not vanish. To evaluate factor (a), it suffices to
project our surface B(P) = 0 onto the “floor” of the big cube. This
projection has a well-defined positive area. Factor (a) is obtained by
dividing this area by L2; it is non zero and has the same value for the
central lines of all possible stacks. Finally, we show that factor (b) is pro-
portional to (L/η)0.5. This task can be reduced to proving that, within a
time t after the beginning of a discrete random walk, the expected number



H18  ♦ ♦ GEOMETRY OF TURBULENCE AND ISO-SURFACES 381

of its returns to the point of departure is proportional to t1/2. This last fact
is well-known; see Feller 1968 (p. 86, Theorem 2).

2.10. A conjecture

A stronger result is known for N∼1, namely that N∼1(L, η)/
〈
N∼1(L, η)

〉
 is a uni-

versal random variable. The same result is doubtlessly true (but I did not
attempt to prove it) of the ratio N(L, η)/

〈
N(L, η)

〉
. If this conjecture were

confirmed, one could show that the limit limη → 0 N(L, η)/ log (L/η) would
involve no randomness and could serve as an alternative definition of D.
This definition is more like the mathematical theory of fractal dimensions
and the definition used in my earlier applications, where D was defined as
either D = log N/ log (L/η) or as some limit of this expression for η → 0.
For example, when attempting to show that coastlines are best regarded as
curves with a dimension D between 1 and 2, I argued (a) that a coastline
is self-similar in the sense that one can, by selecting N − 1 points on any
piece of it, subdivide it into subpieces reduced from the whole by a simi-
larity of ratio r and (b) that, as r → 0, log N/ log r− 1 has a limit that
serves to define D.

In a different application, in which I showed that certain error patterns
are best regarded as a set with a dimension D below 1, I proved that the
counterpart of N(L, η)/

〈
N(L, η)

〉
 is a universal random term.

3. GEOMETRY OF RANDOM SCALAR FIELDS WITH
KOLMOGOROV VARIANCE AND WEIGHTED POISSON AND
GAUSSIAN DISTRIBUTIONS; THESE ARE FRACTIONAL
BROWNIAN FUNCTIONS OF A POINT

Now we consider the Gaussian field B∼(P), with 
〈
[B∼(P′) − B∼(P′′)]

〉
= 0 and

the Kolmogorov variance 
〈
[B∼(P′) − B∼(P′′)]2

〉
= P′P′′

2/3
. The approxi-

mations B(P) and B∼(P) are special cases, corresponding to H = 1/2 and
H = 1/3 respectively, of the more general one-parameter family of
Gaussian fields BH(P) such that the variance

〈
[B

∼
(P′) − B

∼
(P′′)]2

〉 
=

 
P′P′′

  2H
,

where H is a constant between 0 and 1. The case where H ≠ 1/2 and P is
restricted to a line was alluded to by Kolmogorov 1940 and has been
widely used since M & Van Ness 1968{H11} who coined for it the term
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“fractional Brownian process.” The case where the space of P is multi-
dimensional was briefly alluded to by Yaglom 1957 and by Gangolli 1967
and studied in M 1975b{H17}.

Fractional Poisson fields: sharp discontinuity. Let us continue to assume
everything previously said about Poisson fields, with the following excep-
tion: the definition of DnF(P) is replaced by DnF∼(P) − DnF∼(O), where DnF∼(P)
vanishes if OP .OHn = Rn and elsewhere is replaced by

DnF
∼
(P) = 2− 1Qn sgn [OP .OHn

 
− Rn][OP .OHn

 
− Rn]− 1/6.

If the exponent is 0 instead of − 1/6, then DnF∼(P) is again DnF(P) plus
an additive factor, which makes it easier to normalize F∼(O) to zero. The
most striking facts about F∼(P) are that F∼(P′) − F∼(P′′) tends to infinity near
each discontinuity plane and that it is affected by every one of an infinite
number of close or distant discontinuity planes. By way of contrast, F(P)
was only affected by the finite number of planes which intersect the
segment P′P′′. Thus, the elementary steps required for the variance to
follow the 2/3 law are extremely global.

Probability distribution in a scalar weighted probability field. Again, as
in Section 2, the distribution of F(P) tends to a Gaussian as OP → ∞.

Continuity in fractional Brownian fields. As before, the field λ− 1/2λ(P)
is defined such that its variance is independent of λ and its limit λ → ∞ is
a Gaussian field and hence identical to B∼(P). One can prove that this limit
is continuous (almost surely and almost everywhere). Recall that B(P) was
also continuous; this property is less obvious here than it was for B(P),
because the jumps in λ− 1/2DnF(P) tended to zero as λ → ∞, while
λ− 1/2DnF∼(P) remains (for all λ) grossly discontinuous. (Thus, the small
steps in the limit are obtained as the product of 0 and ∞, rather than the
product of 0 and 1.)

 Iso-surfaces.  In the fractional case, the Poisson iso-surfaces are less useful
than in the Burgers case. A first difference in the iso-surface is that they
are no longer made up of small pieces of a plane. Second, the fact that
F∼(P) tends to infinity near one side of each plane of discontinuity means
that each iso-surface is cut up into small pieces, each of them located
within one of the bounded polyhedrons defined by the planes of disconti-
nuity. However, these features cease to be drawbacks in simulations
because F∼(P) is necessarily interpolated from its values computed on a dis-
crete grid. Figure 2 shows several successive “slices” of the volume
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enclosed by a sample fractional Brownian iso-surface. It was obtained by
interpolating a sample fractional Poisson iso-surface B∼(P) = 0, which, again,
was constructed using a Gaussian distribution for the Qn. The qualitative
description given in the caption of Figure 1 also applies here, but the
irregularity is accentuated even more.

The fractal dimension of the iso-surface is equal to 3 − 1/3 and for the
surface [x, y, z, B(x, y, z)] it is doubtlessly equal to 4 − 1/3. All the argu-
ments concerning the fractal dimension proceed exactly as in Section 2
until the point where 

〈〈
N1(L, η)

〉〉
 is shown to be proportional to (L/η)0.5.

The difference is that, for the linear cross-sections that are fractional
Brownian scalar motions of exponent H, this factor equals (L/η)1 − H. For
turbulence, we know that H = 1/3.

A self-similar random field that is not Gaussian cannot be approximated
by a Poisson field. The increments of a field F(P) are called self-similar if
one can rescale them to obtain a function A( OP )[F(P) − F(O)] having a
distribution independent of P. One can show that as a result, A( OP )
must be a power of OP , and it follows that the degree of flatness (also
the kurtosis) of F(P) must be independent of P. Furthermore, one can
show that the only self-similar Gaussian fields are those of the above form
BH(P) and that the only weighted Poisson fields with a variance of the
form  

 
OP

  2H
are also those described above. Hence, we see that attempts

to obtain a non-Gaussian self-similar field as the limit of weighted Poisson
fields are doomed. In Section 5, the field F(P) will be replaced by a vector
field, which can (and in turbulence must) be skew; therefore, the warning
expressed by this last remark will extend to the impossibility of approxi-
mating skew fields using Poisson fields. This result means that the plane
discontinuities used above are mere mathematical devices, devoid of phys-
ical meaning. This feature might have been suspected, given the pro-
foundly nonlinear character of turbulence. The question then arises of
whether or not the above results concerning the role and value of fractal
dimensions continue to apply to non-Gaussian fields. The answer is not
known, and it may well remain unknown until very specific details of the
distribution of the field are determined.

4. DEGREES OF LOCALITY IN SCALAR FIELDS

This section will be devoted to the study of local and global characteristics
in Gaussian fields having either Burgers or Kolmogorov variance or more
generally, the variance P′P′′

2H
 with 0 < H < 1 (called fractional if 2H ≠ 1) .
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It is best to begin with a visual comparison of the figures in M 1975O,
M 1975w{H19}. Both exhibit sample functions of B(x, y, 0) for H = 1/2 and
1/3. The latter case is “flatter,” and its strong high-frequency detail over-
whelms a weak low-frequency background.

The field B(P) with Burgers variance. All rectilinear cross-sections of
B(P), such as B(x, 0, 0), are classical Brownian motions on a line, which are
well-known to have the Markov property. If one knows B(0, 0, 0), which
we may set equal to zero, then all B(x, 0, 0) for x < 0 are independent from
all B(x, 0, 0), for x > 0. Hence, the conditional distribution of B(x0, 0, 0), for
a fixed x0 > 0, is the same if one knows B(x, 0, 0) only for x = 0 or if one
also knows B(x, 0, 0) for any number of points xn < 0(n ≥ 1). Also, if one
knows B(0, 0, 0) and B(x0, 0, 0), added information about the value of
B(x, 0, 0) outside the interval [0, x0] does not change the conditional distrib-
ution of B(x, 0, 0) within that interval. For example, let B(x, 0, 0) be condi-
tioned by known values of B(0, 0, 0), of B(x0, 0, 0) and of B(xk, 0, 0) for any
number of points xk inside (0, x0). In that case, the extrapolate obtained as
the expected conditional value of B(x, 0, 0) is equal to B(0, 0, 0) for x < 0,
and to B(x0, 0, 0) for x > x0. If it is conditioned by B(0, 0, 0), by B(x0, 0, 0)
and by the values of B(x, 0, 0) for any number of points xk outside (0, x0),

FIGURE C18-2. Two successive slices of a computer-generated approximation to
the volume B

∼
(P) > 0, where B

∼
(P) is the Gaussian approximation to a

Kolmogorov scalar field. Here, (contrary to Figure 1) the interpenetrating
black and white regions are very much alike in their appearance. The resem-
blance between this graph and ink splotches (which almost caused it to be
destroyed) enhances the feeling that it represents some genuine feature of the
actual motion of fluids.
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the interpolate is linear. This last feature expresses that the local behavior
of B(x, 0, 0) in any bounded domain on the line is determined by its values
on the domain's boundary plus additional random effects of local nature.

For the field B(P) in space, the situation is somewhat different. The
local behavior of B(x, 0, 0) continues to be determined locally, but the
meaning of the term “local” changes substantially. On the one hand, Lévy
1948 showed that, if B(x, y, 0) is known on the horizontal plane, its values
above and below that plane are not independent; in fact they have a strong
negative correlation. Hence, knowing the value B(0, 0, z) does change the
distribution of the value B(0, 0, − z). Similarly, if B(P) is known on a
sphere including O, knowing the value B(0, 0, 0) does change the distrib-
ution of B(P) outside the sphere. On the other hand, McKean 1963 showed
that, if B(P) is known on two non-intersecting spheres containing O, the
distributions of B(P) at two points, one inside and the other outside both
spheres, are indeed independent; this result is called a two-stage Markov
property. Thus, it remains true that the distribution of B(P) within a small
bounded domain is determined locally, but one must redefine this last
term to imply a knowledge of B(P) on a double (not a single) boundary.

The field B∼(P) with Kolmogorov variance. Compared with the spectral
density k− 2 of the Burgers field B(P), the spectral density k− 5/3 of B∼(P) is
richer in high-frequency harmonics and poorer in low-frequency har-
monics, which indicates that it should be even more local, if anything.
However, this issue deserves a more careful examination. We begin again
with B∼(x, 0, 0) as an example of a rectilinear cross-section. It is the frac-
tional Brownian random function of one parameter (“time”). It is highly
non-Markovian, that is, B∼(0, 0, 0) = 0 being known, the additional know-
ledge of any value B∼(x′, 0, 0), where x′ < 0, will affect strongly the distrib-
ution of B(x0, 0, 0), especially when x0 = − x′. A fortiori, the same is true of
B∼(P) in space. However, curiously, this feature is fully compatible with an
appropriately weakened concept of what is “local.”

The field BH(P) for which the increments' variance is P′P′′2H. This last
characteristic continues to hold true for all Gaussian fields BH(P) such that〈
[BH(P′) − BH(P′′)]2

〉 
= P′P′′2H, with 0 < H < 1/2. The overall effect of

knowing BH(O) = 0 and BH(P0) with P0 = (x0, 0, 0), can be assessed by exam-
ining the conditional expected value of BH(P). One finds

〈
[BH(P) − 1/2BH(P0)] 

 
BH(P0)

〉 
= QBH(P0)
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FIGURE C18-3. The function Q(x,y,0) for x > 1/2. The peak's abscissa is x = 1. (a)
H = 1/2, (b) H = 1/3 and (c) H = 1/6.
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with

Q = 1  
2










OP
x0





2H

−




PP0
x0





2H



.

To simplify, we shall henceforth set x0 = 1. When P lies on the line
from O to P0, Q reduces to

Q = 1/2[ 
 
x 

 2H −  
1 − x 

 2H
].

We have already described the behavior of the function Q when H
takes the Markov value 1/2 and P lies on the straight line joining O and
P0. Let us extend the examination to other values of H and P. For all H,
Q = 0 along the plane x = 1/2, Q > 0 for x > 1/2 and Q < 0 for x < 1/2.

More specifically, let H = 1/2. The iso-Q-surfaces are hyperbloids with
rotational symmetry around the x-axis. Also, when x > 1 and
x2 + y2 + z2 = r2

�1, one has Q ∼ x/r, which means that, within a cone
around the x axis, Q is close to its upper bound of unity. A perspective
view of the surface Q(x, y, 0) is shown in Figure 3(a). Its behavior shows
that, when OP � OP0  and when B(O) and B(P0) are known, the condi-
tioned distribution of B(P) depends strongly on the precise relative posi-
tions of P, O and P0. Conversely, in some cases, such as when x�1 and
y = z = 0, B(P) affects the distribution of B(P0) but not the distribution of
B(O) − B(P0). In other cases, as when r�1, and x is near zero, B(P) affects
the distribution of 1/2[B(P0) + B(O)] but hardly that of B(O) − B(P0)

Now let H < 1/2. Two perspective views of the surface Q(x, y, 0) and a
precise graph for y = z = 0 are shown in Figures 3(b), 3(c) and 4. In the last
figure, for x = 1/2, Q = 1/2 and has a slope equal to H × 21 − 2H (for H = 1/3
the slope is equal to 0.84 ); at the points x = 0 and x = 1, it has cusps, but
over most of (0, 1) it is not too far from being straight. When P is on the x
-axis outside (0, 1), Q tends to zero. The same is true when going away
from O along other directions, since it is readily seen that, when
r2 = x2 + y2 + z2

�1, QH ∼ (x/r)r2H − 1. Thus, for H ≠ 1/2 and r�1, the condi-
tioned distribution of BH(P), knowing BH(O) and BH(P0), depends primarily
on 1/2[BH(O) + BH(P0)]; knowledge of the precise relative positions of O, P
and P0 leads only to a second-order correction. Conversely, BH(P) mostly
affects the local average 1/2[BH(O) + BH(P0)] and hardly affects the distrib-
ution of BH(O) − BH(P0).



388 J. FLUID MECHANICS VOL. 72, 1975, 401-416 ♦ ♦ H18

In summary, neither B(P) nor BH(P) is strictly local for H < 1/2. But
from certain viewpoints, locality is more marked for BH(P) than for B(P).
This is already true when H = 1/3. If H is below the Kolmogorov value
1/3, this locality is accentuated more.

The more local behavior of Q near O and P0 is also worth further
exploration, if only to confirm that it is indeed “local.” This is a region
where the expected behavior of BH(P) is more important in comparison
with the random component. We see that the local shape is likely to
consist of a sharp pit located next to a sharp peak, where “sharp” means
extending a distance that is a small multiple of x0. This feature explains, in
part, the presence of small pieces of “jetsam and flotsam” observed earlier
in the paper.

5. GEOMETRY OF SOME RANDOM VECTOR FIELDS

We shall sketch the generalization of the results to vector fields with
Burgers variance in Sections 2 and 3. They may assist in building intui-
tion, but their counterpart for the case of Kolmogorov variance is likely to

FIGURE C18-4. The function Q(x, 0, 0), corresponding to P lying on the line
joining O and P0. To the right (or to the left) of x = 1/2, Q is a monotone
increasing (or decreasing) function of H. Its behavior is shown for H = 1/6, 1/3
and 1/2.
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have limited use. The reason is that in turbulence skewness is essential
but there is no natural way of building it into turbulence using the
approach in this paper. For example, one can show that the probability
distribution in a weighted Poisson field is such that, while〈
[F(P) − F(O)]2

〉 
=

 
OP 

 2H
,

〈
[F(P) − F(O)]3

〉
equals  

 
OP

  3H − 0.5
if H > 1/6

and is roughly constant if H < 1/6. Hence, the skewness of F(P) − F(O)
unavoidably tends to zero as OP  increases.

Brownian vector fields. A Brownian vector field (normalized, for the
sake of convenience, to satisfy B(O) = 0) can be defined naturally as a
vector B(P) such that its normal component and its two tangential compo-
nents are independent Gaussian random variables of variance proportional
to  

 
OP

  
. It is easy to see that the normal component is at most as large as

either of the tangential ones; this follows from the Kármán-Howarth 1938
reduction of a correlation term to the functions that they call f(r, t) and
g(r, t).

Poisson vector fields. Similarly, one can generate a Poisson field such
that its planar discontinuities have both normal and tangential compo-
nents.

Brownian limits of Poisson vector fields. Given a sequence of Poisson
fields F

λ
(P), the expression limλ →∞ F

λ
(P) a is Brownian field B(P). But it is

a special Brownian field because the vector B(P) − B(O) is isotropic at
every point. (In the familiar Kármán-Howarth notation, the functions f(x, t)
and g(x, t) are identical.)

&&&&&&&&&&&& ANNOTATION  &&&&&&&&&&&&

An episode in the very early history of word processing on the
computer.  This story and a related one are told in Section 4.6 of Chapter
H8.


