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Intermittent turbulence in self-similar
cascades: divergence of high moments

and dimension of the carrier

 ✦ Abstract.  Kolmogorov's “third hypothesis” asserts that in intermittent
turbulence the average ε of the dissipation ε, taken over any domain �, is
ruled by the lognormal probability distribution. This hypothesis will be
shown to be logically inconsistent, save under assumptions that are
extreme and unlikely. A widely used justification of lognormality due to
Yaglom and based on probabilistic argument involving a self-similar
cascade, will also be discussed. In this model, lognormality indeed applies
strictly when � is “an eddy,” typically a three-dimensional box embedded
in a self-similar hierarchy, and may perhaps remain a reasonable approxi-
mation when � consists of a few such eddies. On the other hand, the
experimental situation is better described by considering averages taken
over essentially one-dimensional domains �.

The first purpose of this paper is to carry out Yaglom's cascade argu-
ment, labelled as “microcanonical,” for such averaging domains. The
second is to replace Yaglom's model by a different, less constrained one,
based upon the concept of “canonical cascade.” It will be shown, both for
one-dimensional domains in a microcanonical cascade, and for all domains
in canonical cascades, that in every non-degenerate case the distribution of
ε differs from the lognormal distribution. Depending upon various
parameters, the discrepancy may be moderate, considerable, or even
extreme. In the latter two cases, one finds that the moment 

〈
εq

〉
 is infinite

if q is high enough. This avoids various paradoxes (to be explored) that
are present in Kolmogorov's and Yaglom's approaches.

The paper's third purpose is to note that high-order moments become
infinite only when the number of levels of the cascade tends to infinity, as
is the case when the internal scale η tends to zero. Granted the usual
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value of η, this number of levels is actually small, so the limit may not be
representative. This issue was investigated through computer simulation.
The results bear upon the question of whether Kolmogorov's second
hypothesis applies in the face of intermittency.

The paper's fourth purpose is as follows: Yaglom noted that the
cascade model predicts that dissipation occurs only in a portion of space
of very small total volume. In order to describe the structure of this
portion of space, the concept of the “intrinsic fractional dimension” D of
the carrier of intermittent turbulence will be introduced

The paper's fifth purpose is to study the relation between the parame-
ters ruling the distribution of ε, and those ruling its spectral and dimen-
sional properties. Both conceptually and numerically, these various
parameters turn out to be distinct, opening several problems for empirical
study. ✦

1. INTRODUCTION AND SYNOPSIS

A striking feature of the distributions of turbulent dissipation in the
oceans and the high atmosphere is that both are extremely “spotty” or
“intermittent,” and that their intermittency is hierarchical. In particular,
both are very far from being homogeneous in the sense of the 1941
Kolmogorov-Obukhov theory, in which the rate of dissipation ε was
assumed to be uniform in space and constant in time. In intermittent tur-
bulence, ε must be considered a function of time and space. Let ε (�) be
its spatial average over a domain �. Several approaches to intermittency
view ε as lognormally distributed: in Obukhov 1962, lognormality is a
pragmatic assumption; in Kolmogorov 1962, it is a basic “third
hypothesis” applicable to every domain �; in Yaglom 1966, it is derived
from a self-similar cascade model. Yaglom also finds that there is equality
between the parameter µ of the lognormal distribution and the exponent
in the expressions ruling the correlation and spectral properties of ε.

A closely analogous cascade was considered in de Wijs 1951 & 1953, by a
geomorphologist concerned with the variability in the distribution of the ores of
rare metals. The results in the present paper may therefore be of help outside tur-
bulence theory. A further incidental purpose of this paper is to provide back-
ground material to discussion of instances of interplay between multiplicative
perturbations and the log-normal and scaling distributions. Such interplay occurs
in other fields of science where very skew probability distributions are encount-
ered, notably in economics.
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Having mentioned this broader scope of the methods to be described, I shall
leave its elaborations to other more appropriate occasions.

While substantial effort is currently being devoted to testing the
lognormality experimentally, the purpose of the present paper is to probe
the conceptual foundations of lognormality. Like the works of
Kolmogorov and Yaglom, this discussion shall be concerned with a
phenomenology whose contact with physics remains remote. In partic-
ular, the central role of dissipation will not be questioned. On the other
hand, greater care will be devoted to matters of internal logical consist-
ency and to details of the assumptions. The relation between theory and
experiment will be explored, and will provide a basis for further develop-
ment of the theory.

Since this paper is somewhat lengthy, the mathematics that has as yet
no other application in fluid mechanics will be postponed to Sections 4
and 5. The main results will be stated without proof in this section and in
Section 2. Section 3 will elaborate on the important distinction between
microcanonical and canonical cascades.

(a) Part of this paper is devoted to a new calculation relative to
Yaglom's cascade model for Kolmogorov's hypothesis of lognormality. Let
ε (�) be the average of the dissipation ε over a spatial domain �. One
form of Yaglom's model assumes that � is an “eddy,” perhaps a three-
dimensional cube embedded in a self-similar hierarchy. On the other
hand, in all actually observed averages, � is not a cube, but is more nearly
a very thin cylinder. By following up the consequences of Yaglom's model
in this case, it will be shown that ε (�) is never lognormal, and that its
“qualitative” behavior can fall into any one of three classes:

• In a first class, which is drastically extreme and which will be called
“regular,” ε(�) is not far from being lognormal.

• In a second class, which is equally extreme and which will be called
“degenerate,” all dissipation concentrates in a few huge blobs.

• In a third class, which is intermediate between the above two and
which will be called “irregular,” ε(�) is non-degenerate but is far from
lognormal.

The most striking characteristic of the third class is a parameter α1,
satisfying 1 < α1 < ∞, which rules the moments (ensemble averages)〈
εq(�)

〉
. When q < α1, one has 

〈
εq(�)

〉
< ∞ for all values of the inner scale

η, but when q > α1 and one has η = 0, 
〈
εq(�)

〉
= ∞. Finally, when q > α1 and

η is positive but small, 
〈
εq(�)

〉
 is huge, and its precise value is so

dependent upon η as to be meaningless. The regular class can be viewed



320 JOURNAL OF FLUID MECHANICS: 62, 1974, 331-358 ♦ ♦ N15

as being the limiting case α1 = ∞, and the degenerate class as corre-
sponding to α1 ≤ 1. This eliminates numerous inconsistencies that have
been noted in the literature, concerning the behavior of the moments of ε
under the lognormal hypothesis.

(b) Yaglom's model involves, although only implicitly, a hypothesis of
rigorous local conservation of dissipation within eddies. This feature will
be is said to characterize his cascade as being “microcanonical.” Another
part of this paper will view conservation as holding only on the average;
and the resulting cascades, called “canonical,” will be investigated. When
a cascade is canonical, the behavior of ε(�) will be seen to fall under the
same three classes as have been defined above under (a), when � is cubic
eddy, except that the parameter α1 must be replaced by a new parameter
α3 > α1. In the same cascade, averages taken over cylinders and eddies
may fall in different classes; for example, a regular ε(�) when � is an
eddy is compatible with an irregular ε(�) when � is a cylinder; also, an
irregular ε(�) when � is an eddy is compatible with a degenerate ε(�)
when � is a cylinder.

(c) Another aspect of this paper is purely critical. It concerns
Kolmogorov's second hypothesis, which asserts that the value of η does
not influence ε(�) in the similarity range. This will indeed be confirmed
when ε(�) is in the regular class for every domain �, but will be dis-
proved when all ε(�) are in the degenerate class. In all other cases, the
hypothesis is doubtful. Thus, the domains of validity of the second and
third hypothesis are related.

(d) This paper introduces, in passing, a new concept, which will be
developed fully elsewhere. In the regular and irregular classes, the bulk
of intermittent dissipation is shown to occur over a very small portion of
space, which will be shown to be best characterized by a parameter D
called the “intrinsic fractional dimension” of the carrier. The parameter D
is preferable to the relative volume, because the volume is very small and
too dependent upon η.

(e) Yaglom's theory introduces yet another parameter, which character-
izes the spectrum of ε and is related to a correction factor to the exponent
− 5/3 of the classic Kolmogorov power law. This parameter will be
denoted by Q. The parameters α1, D and Q will be shown to be conceptu-
ally distinct. Naturally, the introduction of any additional assumption
about the cascade introduces a relation among these parameters. For
example, one may, under a special assumption, come close to
Kolmogorov-Yaglom theory, and find that α1, D and Q are functions of a
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single parameter µ. The question of whether or not the actual parameters
are distinct suggests much work to the experimentalist.

(f) For the sake of numerical illustration, a variety of one-dimensional
canonical cascades was simulated on a digital computer, IBM System
360/Model 91. The results, unfortunately, cannot be described in this
paper. Suffice to say that they confirm the theoretical predictions con-
cerning the limiting behavior, but throw doubt upon the rapidity of con-
vergence to the limit.

2. BACKGROUND AND PRINCIPAL RESULTS

2.1. Background: Yaglom's postulate of independence and lognormality

The purpose of this section is to amplify items (a), (b), (c) and (f) of
Section 1. To do so, we shall first describe Yaglom's cascade model in nar-
rower and more specific form. (It is hoped that the spirit of Yaglom's
approach is thereby left unaltered.)

To begin with, the skeleton of the cascade process is taken to be made
of “eddies” that are prescribed form the outset and which are cubes such
that each cubic eddy at a given hierarchical level includes C cubic eddies
of the immediately lower level. ( C is the initial of “cell number.”) This
expresses the fact that the grid of eddies is self-similar in the range from η
to L. Obviously, C1/3 must be assumed to be an integer and is denoted by
b. The sides (edge lengths) of the largest and the smallest eddies are equal
to the external scale L and internal scale η respectively.

The unit of length will be chosen such that η and L are only
dimensionless powers of b. The density of turbulent dissipation at the
point x is denoted by ε(x, L, η) and the density average over the domain �
will be denoted by ε(�, L, η). Units of dissipation will again be such that ε
is dimensionless. When � is a cubic eddy of side r and center x (with
− logbr an integer) we write

ε(�, L, η) = εr(x, L, η).

It is further assumed that the distribution of dissipation over its self-
similar grid is itself self-similar. This means that, whenever η�r < rb�L,
the ratio εr/b(xs, L, η)/εr(x, L, η) is a random variable, to be denoted by Ys,
having a distribution independent of r. Here, {xs} is a regular grid of
centers of subeddies.
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Next (an assumption that goes beyond self-similarity), the successive
ratios ε L/b/ε L, ε L/b2/ε L/b, etc. down to ε r/ε rb, are assumed independent.
This makes log εr − log εL the sum of logb(L/r) independent expressions,
each of which is of the form log Y. Finally, assume 

〈
( log Y)2

〉
< ∞, a condi-

tion which implies that Pr{Y = 0} = 0. This means that log εr − log εL is a
finite sum from a series that would, if carried out to infinity, satisfy the
central limit theorem. One concludes that log εr is approximately
Gaussian, meaning that εr is approximately lognormal.

At this point, the reader may digress to the appendices A1 and A2,
which comment about lognormality.

2.2. Dissipation averaged over thin cylinders

Nevertheless, there are several reasons why, even when all of Yaglom's
assumptions are accepted, the argument sketched above does not suffice to
justify Kolmogorov's third hypothesis, that ε is lognormal for all �. First
(not the basic reason), Yaglom's argument is rigorous only when � is a
cubic eddy. When � (while three-dimensional) is not an eddy,
lognormality is at best approximate. The reason why this argument is not
basic is that, for every three-dimensional � the moments 

〈
εq

〉
 are finite for

all q. A second argument is more basic and concerns the comparison of
theory and experiment. Even though averages taken over three-
dimensional domains, � may be appropriate for a theoretical characteriza-
tion of turbulence (including the hoped-for linkage between the present
phenomenology and actual physics), such averages cannot be measured
experimentally. Actual measurements, by necessity, involve averages
taken over thin cylinders in time and space. By G.I. Taylor's “frozen tur-
bulence hypothesis,” such domains can be replaced by thin cylinders
through the spatial flow. When the radius of such a � is of the same
order of magnitude as the inner scale η of the turbulence, � can be
approximated by a one-dimensional straight segment. Thus one must
raise the question of whether or not the distribution of ε(�, L, η) remains
approximately lognormal when � is one dimensional. Yaglom does not
raise explicitly this question in his works, nor do later writers concerned
with the extent to which the observed data fit the lognormal distribution.
But all these authors imply that the dimensionality of the averaging
domain � has little effect on the distribution of ε(�, L, η).

This paper will show this implicit belief to be unwarranted. More pre-
cisely, whenever � is not an eddy, the distribution of ε(�, L, η) changes
depending which detailed assumptions are made about the cascade
process. The assumptions, made in this paper will now be described. We
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shall evaluate the average of ε(�
η
, L, η) when �

η
 is a cylinder of length r

and radius η, and we shall find that, except in trivial circumstances, the
average is not lognormal.

Throughout, the hierarchy of eddies is not viewed as a physical phe-
nomenon, but as a formal device for constructing the fully cascaded state
of the medium. Every stage of the division of space will be assumed to
preserve the total dissipation. Hence the average over the whole sample
of the local averages over eddies. The simplest procedure is to assume
nothing else about the corresponding Yaglom ratios Y. The resulting
cascade will be called “microcanonical.” Consider successive ratios of the
form ε(�′, L, η)/ε(�′′, L, η), where �′ and �′′ are cylinders of identical
length r but different cross-sections (with �′ embedded in �′′). It will be
found that these ratios are not independent. In order to formalize the limit
process of Yaglom, we shall view the internal scale η as a variable tending
to zero. In Sections 3 and 4 it will be proved that, except in a trivial case,
the distribution of the limit ε(�0, L, 0) where �0 is an infinitely thin cyl-
inder, is never lognormal. In some cases, the difference is small, but in
other cases it is great, implying that the influence of the dimension of �
over the distribution of ε(�0, L, 0) may be critical. The extent of the diver-
gence of the distribution from the lognormal is expressed to a significant
extent by the value of a parameter, denoted as α1, which is defined as the
second zero (the first being q = 1) of the expression

τ1(q) = logb

〈
Yq

〉 
− (q − 1).

The definition of α1 is motivated in Section 4.3, and illustrated on
Figure 1. (The latter uses the notation W instead of Y; the relationship
between the two will be explained in Section 3.)

• The first class is called “regular,” and includes all Y that are
bounded by b. It is characterized by α1 = ∞. The resulting ε(�0, L, 0) differ
little from lognormality. This factor is random but essentially independent
of η, and all its moments are finite.

• The second class is called “degenerate,” and corresponds to Y's that
are extremely scattered. It is characterized by α1 ≤ 1. The resulting
ε(�0, L, 0) vanishes almost surely. In particular,

〈
εq(�0, L, 0)

〉 
= 0 for every

q.

Even though “physical intuition” suggests the opposite, the fact that
ε(�0, L, 0) ≡ 0, hence

〈
ε(�0, L, 0)

〉 
= 0, is perfectly compatible with the com-

bination of limη → 0

〈
ε(�

η
, L, η)

〉
= 1, limη → 0

〈
εq(�

η
, L, η)

〉
= 0 for q < 1, and
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FIGURE C15-1. The distribution of the averaged dissipation ε is determined by
that of the random weight W, which is roughly speaking Yaglom's ratio
between the average dissipation with a subeddy and an eddy. We plot the
function τ1(q) = logb

〈
Wq

〉 
− (q − 1), which is always cup-convex. Through τ1(q),

all presently interesting aspects of intermittency are described as follows. The
spectral properties of ε (the only one to have been examined before the
present study) are determined by the value of τ1(2). In addition, the distrib-
ution properties (finiteness of moments) depend on the value of α1, defined as
the root (other than q = 1) of the equation τ1(q) = 0. Finally, the fractional
dimension of the carrier of turbulence depends on the values of τ′1(1). Thus,
from the viewpoint of properties of ε, its distributions falls into the following
three classes. (a) Regular class: τ′1(1) < 0, τ1(2) < 0 and α1 = ∞. (b) Irregular
class: τ′1(1) < 0, τ′1(2) < 0 and 1 < α1 < ∞. (c) Degenerate class: τ′1(1) > 0,
τ1(2) > 0 and 0 < α1 < 1.
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limη → 0

〈
εq(�

η
, L, η)

〉
= ∞ for q > 1. Such a drastic discrepancy between the

moments of the limits and the limits of the moments is ordinarily achieved
by a deliberate effort to create a mathematical pathology. A classical illus-
tration is the sequence for which ε(�, L, η) equals 1/η with probability η,
and equals zero with probability 1 − η. Here, to the contrary, this discrep-
ancy direct practical consequences. (This is a bit reminiscent of the
singularity, familiar in fluid mechanics, encountered when the coefficient
of viscosity tends to zero.) Thus the degenerate case suggests that, when
η is non-zero but small, dissipation concentrates in a few huge blobs.

• The third class is called “irregular,” and includes all Y's that are not
scattered beyond reason, but can exceed b. It is characterized by
1 < α1 < ∞. In this class,

〈
ε(�, L, η)

〉
remains identically equal to one, while

higher moments 
〈
εq

〉
 behave as follows: when q < α1, they remain finite as

η → 0, but when q > α1, they tend to infinity. This implies that when η is
positive but small, their values are extremely large and in practice can be
considered infinite.

When a probabilist knows that moments behave as stated above, with
the loose additional requirement that the function Pr {ε > x} is “smooth,”
the simplest distribution he is likely to envisage is the “scaling,” defined
as follows: min ε = x0 = α1/(α1 − 1) > 0 and Pr {ε 

> x} = (x/x0)
−α1. The next

simplest possibility is Pr {ε > x} = C(x)x−α1, where the prefactor C(x) is a
function that varies “smoothly and slowly” as x → ∞. (Examples are func-
tions with a non-trivial limit, and functions that vary like log x or 1/ log x
). Such random variables ε are called “asymptotically scaling” or
“Paretian.” To test for their occurrence, it is common practice to plot
log Pr {ε 

> x} as a function of log x: the tail of the resulting curve should be
straight and of slope α1. However, the more interesting prediction con-
cerns the case when η is very small but positive. In that case, all moments
of ε(�, L, η) are very large but finite. If its distribution is again plotted in
log-log coordinates, it must end on a tail that plunges down more rapidly
than any straight line of finite slope. But, the behavior of the moments of
ε as η → 0 also yields a definite prediction for small η, namely: the log-log
plot of the distribution is expected to include a long “penultimate” range within
which it is straight and of slope α1. This is one of the principal predictions of the
present work.

This contrast between Yaglom's conclusions and mine turns out to be parallel
to the contrast between two classic chapters of probability theory. (a) In the theory
of sums of many nearly independent random variables, the asymptotic distribution
is, under wide conditions, universal: it is Gaussian. (b) In the theory of the
number of offspring in a birth-and-death process, the asymptotic distribution
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depends upon the distribution of a number of offspring per generation: it is not
universal. Using statistical mechanics, the thermodynamics properties of matter
had been reduced to theory (a) above, which is why they are largely independent
of microscopic mechanical detail. What Yaglom claims in effect is that the same is
true of turbulent intermittency. To the contrary, Section 4.3 shows that turbulence
is closer to theory (b), the resulting absence of universality probably being
intrinsic. More precisely, the theory underlying this paper is an aspect of the
“theory of birth, death and random walk.”

The ease of verifying this prediction increases as the slope α1 becomes
less steep. In an approximation discussed in Section 4.8, the value of α1
can be inferred from the spectral exponent Q = µ, as being equal to about
2/µ ∼ 4. This suggests that moments should misbehave for q ≥ 4. Further
discussion of the validity of this prediction must be postponed until more
data are available.

2.3. Validity of the microcanonical assumption and reasons for
introducing the canonical cascades

The second purpose of this paper is to probe Yaglom's assumption that
the ratios of the form ε(�s, L, η)/ε(�, L, η), relative to a subeddy �s and to
an eddy � containing �s, are independent. We noted that this is satisfied
by the microcanonical model, in which the cascade is merely a way of
splitting up space. But less formalistic interpretations are conceivable.

For example, one may keep to the approximation that a cascade
divides an eddy exactly into subeddies, but combine splitting with some
kind of diffusion, in such a way that conservation of dissipation only
holds on the average. (Physically, the “dissipation”invoked in this pro-
posal would correspond to the energy transfer between eddy sizes, rather
than to the ultimate conversion of eddy kinetic energy into heat.)

The resulting model is to be called “canonical.” It is interesting
because (a) when � is a cylinder the results it yields are essentially the
same as in the microcanonical model, and (b) Yaglom's ratios turn out to
be so strongly interdependent that ε(�) fails to be lognormal even when �
is an eddy. The theory of the canonical ε(�) with an eddy � follows the
same pattern as the theory of the microcanonical ε(�), with � a cylinder.
Thus, it can fall into any of the three classes noted in Section 2.2, with the
change that one must replace α1 by a new parameter α3. Ordinarily,
α3 > α1.

Since in some cases the predictions of the canonical and the
microcanonical models are very different, the degree of validity of
Yaglom's model depends on the solidity of the foundations of the
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microcanonical assumption. It would be nice if either kind of cascade
turned out to have a more precise relationship with the physical break-
down of eddies but, so far, no connection has been established. As a
matter of fact, the accepted role dissipation plays in the current
phenomenological approach to turbulence should perhaps be downgraded,
and the canonical model of a cascade be rephrased in terms of energy
transfer between different scale sizes. Nevertheless, attempting this task
would go beyond the purpose of the present work, and we shall stick to
the logical analysis of the cascades. The relative advantages and disad-
vantages of the two main models are as follows.

Yaglom's argument. In the case of cylinders, this argument requires
amplification that may lead to substantially non-lognormal results; in the
case of cubes, it is disputable.

The canonical alternative. In the case of cylinders, this alternative
appears to be a nearly inevitable approximation, and in the case of cubes,
it may well be an improvement.

2.4. Kolmogorov's “second hypothesis of similarity”

The possibility of peculiar behavior of the moments leads us to probe
Kolmogorov's second hypothesis, which was stated originally (1941) for
homogeneous turbulence and was generalized in Kolmogorov 1962 to
intermittent turbulence. Intuitively, if � is a domain of characteristic scale
�η, the second hypothesis states that the distribution of ε(�, L, η) is nearly
independent of η. To restate it rigorously, let us make η into a parameter
and let it tend to zero. Kolmogorov's second hypothesis may merely state
that limη → 0ε(�, L, η) exists. If it does, and if (as is usual in mathematics)
the concept of a limit is interpreted through “convergence of probability
distributions,” then for both the canonical and the microcanonical cascades
the second hypothesis will indeed be satisfied. But mathematical conver-
gence need not be intuitively satisfactory, and the second hypothesis
ought perhaps to be interpreted in stronger terms.

When � is an eddy of the microcanonical model, and for other D's
models leading to the regular class, we have ε(�, L, η) → ε(�, L, 0) math-
ematically and, for all q > 0, 

〈
εq(�, L, η)

〉
→

〈
εq(�, L, 0)

〉
. In this case, as

long as η is small, the “error term” ε(�, L, η) − ε(�, L, 0) should be
expected to be small. Kolmogorov's intuitive second hypothesis holds
uncontroversially. When convergence is regular for both eddies and cylin-
ders, the Kolmogorov-Yaglom lognormal approximation is (up to a fixed
correction factor) workable.
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In the degenerate convergence class, on the contrary,
Pr {ε(�, L, 0) = 0} = 1. For small but positive η, ε(�, L, η) and ε(�, L, 0) may
be mathematically close, but are intuitively very different. The actual
behavior of ε when convergence is degenerate appears to resemble the
illustrative example given above. As a result, Kolmogorov's second
hypothesis is not really applicable to this class.

When convergence is irregular and η is small, the error term
ε(�, L, η) − ε(�, L, 0) is extremely likely to be small. But in cases when it
is not small, it may be very large, and its own moments of high order may
be infinite. In this case, the Kolmogorov second hypothesis is controver-
sial, but its degree of validity improves as α1 increases.

2.5. Relationship between the canonical cascade and the “limiting
lognormal” model in M 1972j{N14}

Both the canonical and the microcanonical variants allow the distribution
of dissipation between neighboring subeddies to be highly discontinuous.
However, M 1972j{N14}, has investigated yet another alternative cascade
model, using a “limiting lognormal process.” Its principal characteristic is
that it generates its own eddies of different shapes, and that the distrib-
ution of dissipation within eddies is continuous. This feature will appear
especially attractive when the study of the geometry of the carrier of tur-
bulence is pushed beyond the concept of fractional dimension, to include
matters of connectedness. The limiting lognormal model can be viewed,
though it was developed first, as an improvement upon a canonical
cascade with a lognormal weight W. Section A4 will describe its main
characteristics.

2.6. Study by computer simulation of the rapidity of convergence in the
canonical cascade process

As always in the application of probability theory, limit cascades
(involving infinitely many stages) are of practical interest primarily
because the formulae relative to actual cascades (in which the number of
stages is large but finite) are unmanageable. The present paper goes a
step further, by including “qualitative” arguments about the nature of
error terms for finite cascades. In addition, I have arranged numerous
computer simulations. The very tentative conclusions are (a) that many of
the involved discrepancies from lognormality should manifest themselves
only in a relatively small number of exceptionally large observations, and
(b) that they depend greatly upon high-order moments of the Yaglom
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ratio Y, which express comparatively minute characteristics of the cascade
model.

If these inference are confirmed, then lognormality may combine the
worst of two worlds: it could prove fairly reasonable qualitatively, while
its use for any calculation that involves moments could not be trusted. If
so, even Obukhov, who did evaluate moments, would prove less prag-
matic than he thought. However, having expressed those fears, I hasten to
say that I do not share them, and that I believe the study of intermittency
to be very enlightening as to the nature of turbulence.

3. INTRODUCTION TO CANONICAL AND MICROCANONICAL
CASCADES

3.1. A detailed cascade model

To be able to make a prediction about ε(�, L, η) when � is a cylinder, one
must make assumptions about the local distribution of ε within eddies.
We shall build a model by making η smaller and smaller.

Initially, η = L and the original dissipation ε(x, L, L) is uniformly dis-
tributed in space. At the beginning of each successive stage of the
cascade, one assumes that dissipation density is uniform within each eddy
of side r. This is also the initial distribution one observes if η = r; it can
therefore be denoted by ε(x, L, r). At the end of each stage of the cascade,
the dissipation density is uniform in each subeddy of side r/b. When the
center of an eddy of side r is denoted by x the centers of the immediately
smaller subeddies will be denoted by xs, with 0 ≤ s ≤ C − 1; they form a
regular lattice. The corresponding densities will be denoted by
ε(xs, L, r/b). Next, designate the random variable ε(xs, L, r/b)/ε(x, L, r) by
Ws. The ratio W and Yaglom's ratio Y differ by the fact that W involves
local densities, while Y involves averages, but in the microcanonical model
the concepts of W and Y will merge. Homogeneity suggests that, at each
cascade stage, the s random variables of the form Ws have the same dis-
tribution. Self-similarity and Kolmogorov's second hypothesis suggest in
addition that the distribution is the same for all values of s, r, L and η.
The final stage ends with eddies of side η, and with density ε(x, L, η).

The low- and high-frequency multiplicative factors of ε(Ω, L, η). The
random variable ε(x, L, η) resulting from the above cascade has a single
parameter: L/η. Moreover, since the actions of eddies of sides above and
below r are quite separate, εr(x, L, η) can be written as the product of two
statistically independent factors, which can be studied separately. These
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factors are, respectively, εr(x, L, r) and εr(x, r, η). The former is independent
of η and has r/L as its sole parameter; it is a “low frequency factor.” The
latter is independent of L and has r/η as the sole parameter; it is a “high
frequency factor.” More generally, when � is not an eddy but is included
in an eddy of side r,

ε(�, L, η) = εr(x, L, r)ε(�, r, η).

3.2. The approximate lognormality of the low frequency factor εr(x, L, r)
and the question of whether or not W can take the value zero

To study the low frequency factor, it suffices to follow Yaglom, as in
Section 2.1. One notes that log εr(x, L, r) is the sum of logb(L/r) random
factors of the form W. Assuming 

〈
( log W)2

〉
< ∞, the Gaussian central limit

theorem seems to suggest that log εrx, L, r is approximately normally dis-
tributed, it would follow that εr(x, L, r) is approximately lognormal.

A finite 
〈
( log W)2

〉
 implies in particular that W = 0 has zero proba-

bility. On the other hand, there is a model by Novikov & Stewart 1964
which assumes that W = 0 has a positive probability. In that case, εr(x, L, r)
is usually a mixture: with some positive probability, it vanishes, and with
the remaining probability, it is lognormal. In the present paper, to allow
W = 0 will not cause any complication, and in fact will allow consideration
of useful simple examples.

3.3. The high frequency factor; limit behavior for η → 0

This limiting behavior is ruled by the following theorem (stated at the
intermediate level of generality at which the proof is simplest, a level
more general than is required and less general than is possible).

 Theorem.  Let the domain � be simple, meaning that � is the sum of a
finite number of eddies when E = 3, and the sum of a finite number of
eddy edges when E = 1. Consider ε(�, L, η) (for fixed � and L ) as a
random function of η. Assume 

〈
W

〉
= 1 and let η → 0. Then, with proba-

bility equal to 1, ε tends to a finite limit random variable.

 Proof.  This proof is written as a digression addressed to readers having
an elementary knowledge of the theory of “martingales.” This theory is
the next most obvious mathematical generalization of the theory of pro-
ducts of independent random variables of unit expectation, such as
Yaglom ratios. In order to conform to the usual presentation of
martingales, let us view the actual value of the inner scale η as the
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“present value,” values η′ < η and η′ > η being viewed respectively as
“future” and “past.” A martingale is a random function such that the
expectation of a “future” value, conditioned by knowing the present value
and any number of past values, is equal to the present value. Here “time”
is discrete, being equal to − logbη. Assume that � is an eddy of side r; a
similar argument applies to other simple �'s. Denote its subeddies of side
r/b by �s. We know that

ε(�, L, η/b) = 1
C �

C − 1

s = 0

Wsε(�s, L, η).

Designate by EC the conditional expectation, given the present and any
one of past values of ε(�, L, η). Since 

〈
W

〉
= 1, we have

ECε(�, L, η/b) = 1
C �

C − 1

s = 0

ECε(�s, L, η) = ECε(�, L, η) = ε(�, L, η).

This proves that ε(�, L, η) is a martingale. Being non-negative, ε obeys a
convergence theorem (Doob 1953, p. 319): as η → 0, ε(�, L, η) has a limit
random variable to be denoted by ε(�, L, 0).

 Corollary.  In the case of cubic eddies, εr(x, r, η) converges to a limit
εr(x, r, 0). By self-similarity, the limit is independent of r, so it can be
denoted by ε1(x, 1, 0).

 Remark.  The above theorem means that, when r/η�1, one knows
ε(�, L, η). “approximately” without knowing the exact value of η.
However, any more detailed information about the quality of approxi-
mation involves the character of the convergence of ε(�, L, η) to ε(�, L, 0)
(regular, irregular or degenerate), and in turn requires more detailed
assumptions about the model (e.g., about the set of random variables W).

3.4. The microcanonical cascade

Definition. A cascade will be called microcanonical if the sum ∑C − 1
s = 0 Ws of the

weights Ws corresponding to all the subeddies of any eddy is precisely equal to C.
{P.S. My more recent papers use the more self-explanatory term, conserva-
tive..}

As a corollary, 
〈
W

〉
= 1 and W < C.
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The microcanonical condition expresses that, at each cascade stage, the
total dissipation r3ε(x, L, r) within an original eddy is replaced by an equal
dissipation distributed among its C subeddies of centers xs, namely

�
C − 1

s = 0

r3

C
ε(xs, L, r/b) = �

C − 1

s = 0

Ws

C
[r3ε(x, L, r)]

Hence, as long as η < r, one has εr(x, L, η) = ε(x, L, η). This result is inde-
pendent of η, and shows that the high frequency factor εr(x, L, η) is iden-
tically equal to 1, which makes it independent of η. Consequently,
Yaglom's ratio Ys coincides with Ws and his postulate of independence is
satisfied. Thus, the theory of microcanonical averages taken over three-
dimensional eddies is seen to coincide with Yaglom's theory.

The converse, that Yaglom's theory is identical to the microcanonical
theory, is also true, under certain additional constraints, but there is no
need to digress for the proof.

Notice that the microcanonical weights Ws are statistically dependent.
In particular, if s ≠ t,

〈
W sW t

〉
=

〈
W sE C(W t knowing W s)

〉
=

〈 W s(C − W s)
(C − 1)

〉

= 1 − (
〈
W2

〉 
− 1)/(C − 1) < 1.

Therefore,
〈
W sW ε

〉
<

〈
W s

〉〈
W t

〉
. This inequality expresses that any two

weights are negatively correlated (see Section A5). There are analogous
results for higher cross-moments; for example, 

〈
W2

s Wt

〉
 < 1.

3.5. The canonical cascade

Definition. A cascade will be called canonical if the weights Ws are statistically
independent and satisfy 

〈
W

〉
= 1, meaning that the sum of the weights is

equal to C on the average. In order to obtain features that go beyond the
microcanonical case, it is critically important to allow W to exceed the
ceiling W = C.
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The canonical variant as an approximation for cylinder averages in a
microcanonical cascade.  Consider a cylinder of length r constituted by a
string of elementary eddies of side η hugging one edge (to be called the
“marked edge”) of a cubic eddy of side r. The dissipation in this cylinder
can be obtained through a sequence of two different subcascades. The
first subcascade, applicable until an eddy of side r has been reached,
follows the mechanism described in Section 3.3, typically ending up with a
lognormal εr(x, L, r). The second subcascade is ruled by a different mech-
anism. The first difference is that each stage only picks those subeddies
placed along the marked edge, but we know their number is not C but
b = C1/3. The second difference is that the conditions imposed on the corre-
sponding weights are

(a): Ws < C, (b) �
b − 1

s = 0

Ws ≤ C and (c)
〈
Ws

〉 
= 1.

By contrast, if the second subcascade had been microcanonical with b
subeddies per eddy, the weights would have obeyed the conditions

(a′): Ws < b and (b′): �
b − 1

s = 0

Ws = b,

which are much stronger. As C → ∞ and b/C → 0, conditions (a) and (b)
above become increasingly less demanding in comparison with (a′) and
(b′).

This observation gives us a choice between two procedures. The line
sections can be studied directly and rigorously. But there is a more attrac-
tive alternative: the second subcascade generating a line average can be approxi-
mated by a canonical cascade. In a canonical cascade, the condition W < C
may, in a first approximation, be waived. One may even approximate W
by a lognormal random variable, despite the fact that the lognormal is
unbounded.

Hence, even if the cascade ruling the cubic eddies is microcanonical,
the theory of canonical cascades turns out to be a useful approximation.
Incidentally, its most striking result, divergence of high moments, is con-
firmed by direct argument.
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The effect of the condition W < C on the difference between the results of
the microcanonical and the canonical models. When three-dimensional
canonical eddies are regular, the values of ε given by the canonical and
microcanonical theories are identical except for a random prefactor. In
this case, the necessary and sufficient condition for regularity is W < C.
Under the more demanding condition W < b, one-dimensional averages are
also regular but when b < max W < C, three dimensional and one-
dimensional averages belong to different classes and may differ signif-
icantly.

4. CLASSIFICATION OF CASCADES ACCORDING TO THE
BEHAVIOR OF THE MOMENTS OF ε

4.1. A basic recurrence relation for ε(D, L, η)

Let � be an eddy of dimension E = 3. The definition of Section 3.3 yields,
irrespective of the rule of dependence between the W's,

εbr(x, L, η) = C− 1�
C − 1

s = 0

εr(xs, L, η),

where {xs} is a regular grid of centers of subeddies. Factor the ε on both
sides into products of low and high frequency components as follows:

εbr(x, L, br) • εbr(x, br, η) = C− 1�
C − 1

s = 0

εr(xs, L, r) • εr(xs, r, η).

Next replace εr(xs, L, r) by Wsεbr(x, L, br) and divide both sides by
εbr(x, L, br). We obtain

εbr(x, br, η) = C− 1�
C − 1

s = 0

Wsεr(xs, r, η).

Finally, taking account of self-similarity, we obtain the following basic
recurrence relation:

ε1(x, 1, η/br) = C− 1�
C − 1

s = 0

Wsε1(xs, 1, η/r).
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When E = 1, so that � and �s are straight intervals of length r, one has the
very similar relation

ε(�, 1, η/br) = b− 1�
b − 1

s = 0

Wsε(�s, 1, η/r).

Derivation of the moments of eddy averages from the basic recurrence
relation. For q = 1, it suffices to check that the relation

〈
ε1(x, 1, η)

〉 
= 1 and

the above recurrence relation are compatible. For q > 1, the recurrence
relation for ε1 can be used to deduce a recurrence relation for the sequence
of the moments 

〈
εq

1(x, 1, b− k)
〉
. The form of the latter depends on the rule

of dependence between the W's. Throughout, we shall set r = 1, which will
simplify the notation.

The microcanonical case. We know that ε1(x, 1, η) = 1, but we want to
verify that 

〈
εq

1(x, 1, η)
〉

= 1. Indeed, for q = 2, we have

〈
ε2

1(x, 1, η/b)
〉 

= C
〈
( W

C
)
2〉〈

ε2
1(x, 1, η)

〉 
+ C(C − 1)

〈 Ws

C
Wt

C

〉
[
〈
ε1(x, 1, η)

〉
]2

=

〈
W2

〉

C

〈
ε2

1(x, 1, η)
〉 

+ C − 1
C

⎡
⎢
⎢
⎣
1 −

〈
W2

〉 
− 1

C − 1

⎤
⎥
⎥
⎦
.

Starting from 
〈
ε2

1(x, 1, 1)
〉

= 1, we obtain
〈
ε2

1(x, 1, 1/b)
〉 

= 
〈
W2

〉
/C + 1 − C− 1 − 

〈
W2

〉
/C + C− 1 = 1.

The recurrence relation reduces to the identity 1 = 1, as it should. The
recurrence relations for q > 2 also reduce to identities.

The canonical case. Now, the recurrence relation for the moments takes
the form
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〈
ε2

1(x, 1, η/b)
〉 

= C
〈
(W/C)2

〉〈
ε2

1(x, 1, η)
〉 

+ 2[(1/2)C(C − 1)]
〈
(W/C)

〉〈
ε1

〉
]
2

= (
〈
W2

〉
/C)

〈
ε2

1(x, 1, η)
〉 

+ (C − 1)/C.

This is no longer an identity, but rather it establishes that the necessary
and sufficient condition for limη → 0

〈
ε2

1(x, 1, η)
〉

< ∞ is 
〈
W2

〉
/C < 1. Simi-

larly, we have the following important property

limη → 0

〈
εq

1(x, 1, η)
〉

< ∞ if and only if

〈
Wq

〉

Cq − 1
< 1.

 Conclusion.  For eddy averages, the asymptotic behavior of the moments
depends on the nature of the cascade.

A necessary and sufficient condition. In order for the inequality〈
W 

q
〉
/C 

q − 1 < 1 to hold for all q, it is necessary and sufficient that W < C.

 Proof of necessity.  The inequality
〈
Wq

〉
/Cq − 1 < 1, i.e.,

〈
(W/C)q

〉
< 1/C,

implies that

max(W/C) = limq →∞[
〈
(W/C)q

〉
]1/q < limq →∞C− 1/q = 1.

Proof of sufficiency. Knowing that 
〈
W

〉
= 1 and W < C, 

〈
(W/C)q

〉
 is maxi-

mized by setting Pr{W = C} = 1/C and Pr{W = 0} = 1 − VC. In this extreme
case,

〈
(W/C)q

〉 
= 1/C, so in all other cases

〈
Wq

〉
/Cq − 1 < 1.

Derivation of the moments of line averages from the basic recurrence: the
microcanonical case.  The recurrence relation for moments is now
replaced by
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〈
ε2(�, 1, η/b)

〉 
= b

〈
(W/C′)2

〉〈
ε2(�s, 1, η)

〉 
+ (b − 1)b− 1

〈
WsWt

〉

=

〈
W2

〉

b

〈
ε2(�s, 1, η)

〉 
+ b − 1

b

⎡
⎢
⎢
⎢
⎣

1 −

〈
W2

〉 
− 1

(C − 1)

⎤
⎥
⎥
⎥
⎦

.

This is no longer an identity: the necessary and sufficient condition for

limη → 0

〈
ε2(�, 1, η)

〉
< ∞

has become 
〈
W2

〉
/b < 1. Similarly, we have the following important prop-

erty:

limη → 0

〈
ε2

q(�, 1, η)
〉

< ∞ if and only if

〈
Wq

〉

bq − 1
< 1.

The canonical case. The recurrence relation is unchanged when the
dimension changes from E = 3 to E = 1, except for the replacement of C by
b. Therefore, we fall back on the condition 

〈
Wq

〉
/bq − 1 < 1 of the preceding

paragraph.

 Conclusion.  For line averages, the finiteness of the limiting moments is
not dependent on the nature of the cascade. On the other hand, the value
of the limiting moment, when finite, is smaller when the cascade is
microcanonical; for example, for q = 2, it is smaller by the factor
1 − (

〈
W2

〉 
− 1)/(C − 1).

4.2. The determining functions Ψ(q)

In order to apply the above results to classify cascades, and in order to
carry the theory further, we form the expression

Ψ(q) = logC

〈
Wq

〉
,
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which will be called the “determining function.” More specifically, when
� is E -dimensional, we shall need the quantities

τE(q) = (3/E)Ψ(q) − (q − 1).

To define various parameters of dissipation, different features of these
functions must be examined. First of all, 

〈
Wq

〉
/(CE/3)q − 1 < 1 is synony-

mous with τE(q) < 0, and so the values of the zeros of τE(q) are of interest.

For all q, a general theorem of probability theory shows that Ψ(q) is a
convex function of q (see Feller 1971, p. 155), and so are all the functions
τE. Hence, Ψ(1) = τE(1) = 0, and τE(q) has, at most, one root other than 1.
This root it will be designated by αE. The conditions τ1(q) < 0 and τ2(q) < 0
are both at least as demanding as τ3(q) < 0, so when α1 > 1, the αE satisfy
α1 ≤ α2 ≤ α3.

A further investigation of the τE involves their slopes for q = 1, more
specifically the expressions

DE = − Eτ′E(1) = − E
〈
W logCE/3(W/C)E/3

〉

= − 3
〈
W logCW

〉 
+ E.

Writing D3 = D, we have D2 = D − 1 and D1 = D − 2. The value of DE will be
useful, because an E -dimensional average in a canonical cascade is degen-
erate when DE < 0 and non-degenerate when DE > 0. In particular, when
W < CE/3, DE > 0. (The transition case D1 = 0 deserves the attention of the
mathematicians, but is too complicated to be tackled in this paper.) More
precisely, in the degenerate case D1 < 0, one has αE < 1, and the value of αE
plays no special role. But in the non-degenerate case DE > 0, αE satisfies
αE > 1, and its value serves to determine whether the cascade is regular (
αE = ∞ ) or irregular ( αE < ∞ ).

We know that for all q > 1, αE = ∞ is equivalent to 
〈
Wq

〉
/(CE/3)q − 1 < 1.

It follows that the necessary and sufficient condition for αE = ∞ is
W < CE/3, an inequality already featured in Section 2.2.

When DE > 0, the quantity DE plays an independent role as the
intrinsic dimension of the support of ε within an E -dimensional � (see
Section 4.8).
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Since W log W is concave,
〈
W log W

〉 
> 

〈
W

〉 
log 

〈
W

〉 
= 0; therefore, the

intrinsic dimension DE never exceeds the embedding dimension E.

Finally, the “second-order” dependence properties of the dissipation,
namely its correlation and its spectrum, depend on the value of Ψ(2).
Yaglom showed the correlation between the averages taken over small
domains �, separated by the distances d, to be proportional to d− Q, with

Q = 3 logC

〈
W2

〉 
= 3Ψ(2) = 3[τ3(2) + 1].

To obtain a lower bound on Q, note that from 
〈
W

〉
= 1 it follows that〈

W2
〉 

> 1 and hence that Q > 0. More precisely,

Q > 3(1 + τ′3(1)) > 3 − D.

As for the upper bounds, under the constraints 
〈
W

〉
= 1 and W < C, we

know that the maximum of 
〈
W2

〉
 occurs when Pr{W = C} = 1/C and

Pr{W = 0} = 1 − 1/C, in which case
〈
W2

〉 
= C and so Q = 3. More generally,

W < CE/3 implies Q < E. When W/CE/3 > 1 on the contrary, it may happen
that Q > E.

Studies involving correlations of higher order q depend similarly on
values of f up to the argument q. Since we shall stop at the second order,
our classification of canonical cascades will depend solely on the values of
Q, D and αE. These parameters are conceptually distinct, and their numer-
ical values are only related by the conditions of compatibility Q > 3 − D
and (αE − 1)DE > 0. The question of whether or not their actual values are
related should be investigated experimentally.

The relationship between W, Ψ(q) and the various other parameters
deserves additional mathematical investigations. A knowledge of C and of
the distribution of W determines Ψ(q) for all q, and thus determines all the
parameters. On the other hand, a knowledge of C and of the values of
Ψ(q) for integer values of q an integer need not determine W uniquely. A
sufficient condition is that the moments satisfy the Carleman criterion (see
Section A2). This technicality is important because this criterion fails in
the case of a lognormal W.

4.3. Examples of determining functions
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Rectilinear determining functions. Ψ and τE are linear functions of q if W
is binomial, i.e., Pr{W = 1/p} = p and Pr{W = 0} = 1 − 1/p. If so,

〈
Wq

〉 
= pp− q = p1 − q, thus τ3(q) = (1 − q) logC(pC),

which is a degenerate form of convex function.

Digression, This example reduces to the classical theory of birth-and-
death processes (see Harris 1963). After K “generations,” each elementary
subeddy either is empty or includes a non-random mass of turbulence
equal to p− K. Discarding this last factor, the mass in an eddy and the
number of its non-empty elementary subeddies are equal. Their proba-
bility distribution is readily determined: between each generation and the
next, non-empty elementary eddy can be interpreted as acquiring random
“offspring” made of M lower order elementary eddies, with M following a
binomial distribution of expectation CE/3p. When M = 0, the eddy “dies
out.” When M > 1, new eddies are born. Classical results on birth-and-
death processes show that the number of offspring after the kth generation
is ruled by the following rule. When p ≤ 1/CE/3, so that DE ≤ 0, it is
almost certain that the offspring will eventually die out. When p > 1/CE/3,
so that DE > 0, one forms the ratio of the number of offspring to its
expected value (CE/3p)K = bDEK. One finds that this ratio tends
asymptotically towards a non-degenerate limiting random variable that
has finite moments of every positive order.

Asymptotically rectilinear determining functions. Now let us suppose
only that W is bounded. Designate its greatest attainable value by max W.
This means that Pr{W > max W} = 0, but Pr{W > max W − θ} > 0 for all
θ > 0. (A more correct mathematical idiom for max W is “almost sure
supremum.”) It follows that limq →∞( logC

〈
Wq

〉
/q) = logC max W, which

implies that Ψ(q) has an asymptotic direction of finite slope logC max W.
Conversely, in order for this asymptotic slope to be finite, it is necessary
that W < max W < ∞. Also, τE(q) has an asymptotic direction of slope
− 1 + log max W/ log CE/3. When max W < CE/3, this slope is negative and
τE(q) = 0 has no root other than 1; in other words, αE = ∞. When
max W > CE/3, and particularly when max W = ∞, one has αE < ∞. This
confirms our assertion that, in general (except for some inequalities), the
values of D, Q and the αE are independent. See the caption of Figure 2.
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FIGURE C15-2. Characterization of the distribution of ε(�) when (a) log W is
normal; τ1(q) is then a parabola and τ1(q) = 0 has two finite roots (solid line);
(b) log W is a sum of sufficiently many terms to be a good approximation to
the normal distribution; τ1(q) is then nearly parabolic for q < α1 (dashed line);
(c) log W is the sum of comparatively few terms; even when the quality of
approximation to the normal distribution is good by other standards, it may
be poor from the viewpoint of e; in the zone of interest, τ1(q) is far from
parabolic and τ1(q) = 0 may have a single finite root, i.e. α1 = ∞ (dash-dot
line). Thus the degree of sensitivity of various properties of ε are very dif-
ferent. On the one hand, the moment properties of the distribution of ε
depend greatly upon fine details, namely the tail of the distribution of W: a
lognormal W never fails in the regular class, but a “nearly log normal” W may
do so. On the other hand, the value of τ1(2), hence of the spectral properties
of ε, and even more the value of τ′1(1), hence of the fractional dimension, will
be essentially the same for the three cases as drawn.
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 Parabolic determining functions.  Suppose that log W is Gaussian of mean
and variance 

〈
log W

〉
 and σ2 log W =

〈
( log W)2

〉
−

〈
log W

〉
2. Then W is

lognormal, and
〈
Wq

〉 
= exp(q

〈 
log W

〉 
+ q22− 1σ2 log W).

That is,

Ψ(q) = logC

〈
Wq

〉 
= (q

〈 
log W

〉 
+ q22− 1σ2 log W) logCe.

This function Ψ(q), and the functions τE(q) are represented by parabola.

Digression. The lognormal distribution not being fully determined by
its moments (see Section 2), other weights W may lead to the same Ψ(q)).

To insure that 
〈
W

〉
= 1, we must have −

〈
log W

〉
= (1/2)σ2 log W, a

quantity to be denoted (in order to fit Kolmogorov's notation) by
(µ/6) log C. It follows that

Ψ(q) = 1  
6

(q − 1)qµ.

Hence, DE = − 3Ψ ′(1) + E = E − µ/2, αE = 2E/µ and Q = µ. Here, the values
of D, Q and the α's are all functions of µ, and are strongly interdependent;
this is an exceptional circumstance (see Section 4.9).

The determining function when log W is a sum of many uniform random
variables (Figure 2). Suppose that log W is bounded, for example a sum of
many uniformly distributed random variables. Such a sum is near-
Gaussian according to the customary definition of nearness. When q is
small, the resulting τE(q) will nearly coincide with the parabola in the pre-
ceding paragraph, but asymptotically it will be a straight line. The graph
of τE(q) will be a portion of parabola continued by a straight tangent. If
we add many uniform components, this tangent will have positive slope,
therefore log W and its Gaussian approximation will yield about the same
value for α. If, on the other hand, we add few uniform random variables,
the asymptotic tangent will have negative slope and the lognormal
approximation will be entirely worthless.

As an illustration, let us describe one of our early computer simu-
lations of a cascade. We thought that W was ostensibly lognormal and we
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expected αE < ∞. But the actual results were completely at variance with
the expectations. They remained mysterious until it was recalled that to
generate the Gaussian random variable, our computer added 12 random
variables uniformly distributed on [ − 0.5, + 0.5]. When the same program
was run again, this time adding 48 and then 192 uniform random vari-
ables, the results changed to full conformity with the expectations. (See
also Sections 4.3 and 4.9.)

4.4. Regular classes

A classification of cascades can be based either on a single value of E, or
on two or three values, typically E = 1 and E = 3.

The regular class for fixed E. Here ε(�E, L, 0) is, by definition, a non-
degenerate random variable with all moments finite. In a canonical
cascade, the necessary and sufficient condition for limη → 0

〈
εq

1(x, L, η)
〉

< ∞
can be written as τ(q) < 0 for all q > 1, in αE = ∞, or, as W < CE/3. As a cor-
ollary, Q < 3.

A formal argument would consist in replacing the limits of the
moments with the moments of the limit, and would suggest that〈
εq

1(x, L, 0)
〉 

< ∞ holds if and only if τE(k) < 0 for all q > 1. This formal argu-
ment is justified by a theorem in Doob 1953, p.319. Ordinarily, physicists
do not feel that such justifications deserve attention but Section 4.5 will
show that in this context they must be taken seriously.

A microcanonical cascade is always regular from the viewpoint of
eddy averages. In addition, the condition W < CE/3 is necessary and suffi-
cient to insure that W be admissible as weight in a microcanonical cascade
with the same E. Consider, then, both the microcanonical and the
canonical cascades corresponding to a weight W of the regular class. The
only effect of changing the definition of the cascade is to change the high
frequency term of εr(x, L, 0) from 1 to some random variable having finite
moments of all orders. In other words, the only difference between the
full canonical random variable εr and its lognormal low frequency term
lies in a numerical factor whose values are about the same when η = 0 and
when η is small but non-zero. Such a factor is comparatively innocuous.

As a specific example, if W is binomial with

Pr {W = 1/p} = p and Pr{W = 0} = 1 − p,

τE(q) < 0 if and only if pCE/3 > 1, i.e., p > 1/CE/3.
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The uniformly regular class defined by α1 = ∞, i.e., D1 > 0. In this case, it
is true for all values of E that E's, and ε(�, L, 0) is a non-degenerate
random variable with finite moments. In this class, ε(�, L, η) may be said
to be “approximately lognormal.” Yaglom has implicitly assumed that this
situation prevails in practice. This may, but need not, be so. Only exper-
iments can tell.

4.5. Degenerate classes

The degenerate class for fixed E. This class is defined by Pr{ε (�),
L, 0) = 0} = 1. A sufficient condition is D < 0, from which it follows that
α ≤ 1.

The proof (see Section A3) consists of showing that the number of ele-
mentary subeddies of side r contributing to the bulk of εr(x, L, 0) is
roughly equal to (L/r)DE. From DE < 0 it follows that, as η → 0, this number
tends to zero, and so does ε(�, L, η). Two examples come to mind.

First example. Pr{W = 1/p} = p and Pr{W = 0} = 1 − p with p < 1/C.

Second example. Since a lognormal distribution is unbounded, a
lognormal cascade is never regular. Because DE = E − µ/2, the cascade is
degenerate when DE < 0, i.e., when µ > 2E. In particular, εr(x, L, η) is
lognormal only when r = η.

The uniformly degenerate class. When ε(�E, L, 0) is degenerate for E = 3,
i.e., when D < 0, ε is also degenerate for E = 2 and E = 1.

4.6. Irregular classes

The irregular class for fixed E. This class is defined by
Pr{ε(�E, L, 0) = 0} > 0, with

〈
εq(�E, L, 0)

〉 
< ∞ for small enough q > 1, but〈

εq(�E, L, 0)
〉 

= ∞ for large finite q. The class is characterized by 1 < αE < ∞,
and the cut-off between finite and infinite moments is q = αE (see M
1974c{N16} and Kahane 1973).

The uniformly irregular class. When ε(�E, L, 0) is non-degenerate for
E = 3 and is irregular for E = 1, then it is irregular for all E.

4.7. Mixed classes

Since α1 < α2 < α3, it is possible that a cascade (E = 3) and its cross-sections
(E = 1 and E = 2) belong to different classes. Neglecting the behavior for
E = 2, three possibilities are open. We shall give one example of each.
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An example from the mixed regular-degenerate class. Pr{W = 1/p} = p and
Pr{W = 0} = 1 − p with C− 1 < p < C− 1/3. Here τ3(q) < 0 but τ1(q) > 0 for all
q > 1. That is, the cascade is regular for E = 3 but degenerate for E = 1.

Comments. I doubt that this mixed class is ever encountered in prac-
tice, because it implies that the spatial distribution of dissipation is
extraordinarily sparse, sparser than anything I would consider as likely.

An example from the mixed regular-irregular class: lognormal W. Take
C = 27, so that C1/3 = b = 3, with the random variable W satisfying
Pr{W = 3.7} = 0.1 and Pr{W = 0.7} = 0.9. Since W < C, the resulting three-
dimensional cascade is regular, and it may correspond to a canonical
approximation of a microcanonical cascade. On the other hand, it is not
true that W < b, although it is true that τ′1(1) < 0. As a result, a one-
dimensional cascade corresponding to this W is irregular.

Comments. I consider this last situation to be a very strong possibility.
If and when it occurs in practice, the distribution of one-dimensional aver-
ages is not at all lognormal. One task for the experimental study of turbulence
should be to check whether or not such a mixture ever occurs. It may be that dif-
ferent circumstances yield either this mixture or the uniformly regular class; if so,
those circumstances should be classified according to the class to which they lead.

An example from the mixed irregular-degenerate class: lognormal W. If
2 < µ < 6, the full three-dimensional pattern is irregular, while one-
dimensional cross-sections are degenerate.

4.8. Digression: DE as a fractional intrinsic dimension

Select two arbitrary small thresholds ω and γ. When DE > 0, it can be
shown (see Section A3) that the eddies of side r can be divided into two
groups. The eddies of the first group contain a proportion greater than
1 − p of the whole dissipation. However, their number lies between
(L/r)DE − γ and (L/r)DE + γ, which makes the group relatively very small. As
a result, almost all eddies belong to the second group. But, the total dissi-
pation they contain is at most equal to ω, which makes it negligible.

It is convenient to call DE an intrinsic dimension; alternatively (because
it need not be an integer) it can be called a fractional dimension.

The notion that a geometric figure can have a fractional dimension
was conceived in 1919 by a pure mathematician, Felix Hausdorff. This
concept is closely related to the Cantor set, and both have the reputation
of lacking any conceivable application, and of “turning off” every natural
scientist. I believe that this reputation is no longer deserved. I hope to
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show (elsewhere) that fractional dimension is in fact something very con-
crete and that different aspects of it are useful measurable physical charac-
teristics. Examples are the degree of the wiggliness of coastlines,
described in M 1967s, the degree of clustering of galaxies, and the inten-
sity of the intermittency of turbulence.

In these applications, it is best to use a semi-formal variant of dimen-
sion called the “similarity dimension,” which is of more limited validity
than Hausdorff's concept, but incomparably simpler. It is rooted in some
elementary features of the usual concept of dimension, as applied to seg-
ments of a straight line, to rectangles and to parallelepipeds. A line has
dimension D = 1, and for every positive integer C, the segment where
0 ≤ x < X exactly subdivides into C non-overlapping segments of the form
(n − 1)X/C ≤ x < nX/C, where 1 ≤ n ≤ C. To obtain one of these parts from
the whole one performs a similarity of ratio ρ(C) = C− 1. In the same way, a
plane has dimension D = 2, and for every integer 

√
C , the rectangle where

0 ≤ x < X and 0 ≤ y < Y subdivides exactly into C non-overlapping rectan-
gles of the form

 

(k − 1)X
√
C

≤ x < kX√
C

and
(h − 1)Y

√
C

≤ y < h Y√
C

,

where 1 ≤ k ≤ C and 1 ≤ h ≤ C. To obtain one of these parts from the
whole, one performs a similarity of ratio ρ(C) = 1/C1/2 = 1/b. More gener-
ally, a D-dimensional rectangular parallelepiped can, for every integer
C1/D = 1/b, be decomposed into C parallelepipeds. To obtain one of these
parts from the whole, one performs a similarity of ratio ρ(C) = 1/C1/D.

For each of the above figures, the dimension D satisfies the relation

D =
− log C
log ρ(C)

.

This suggests that the concept of dimension can be generalized to the
set on which the bulk of intermittent turbulence is concentrated. Here
1/ρ(C) = L/r, and for every γ > 0,

(L/r)DE − γ < C < (L/r)DE + γ, i.e., DE − γ < log C/ log ρ(C) < DE + γ.

In other words the dimension of that set is DE. The intuitive notion that
turbulence concentrates on an extremely sparse set is expressed numer-
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ically by the inequality DE < E. By choosing W appropriately, the dimen-
sion DE can take any value between 0 and E. Note also that, when D < 3,
D3/3 = D/3 is greater than D2/2 = (D − 1)/2, which in turn is greater than
D1 = (D − 2). The inequality D < 3 expresses that a figure does not fill the
space dimensionally, and the inequality D/3 > (D − 2) expresses that the
intersections of such a figure by straight lines are dimensionally even less
filling.

I have great faith in the practical usefulness of fractional dimension
and hope it will be explored further. In particular, it opens up the issue of
the degree of connectedness of the volume where the dissipation concen-
trates. However, neither the microcanonical nor the canonical models
appear to provide a satisfactory framework, because both allow the dissi-
pation to be divided very discontinuously. Therefore connectedness
should be studied in some other context, say, that of the limiting
lognormal model.

4.9. Further comments on the lognormal approximation to W, and on
parabolic approximations to Ψ(q)

Suppose that W is non-lognormal and bounded, and satisfies
σ2 log W < ∞, and let W be its lognormal approximation and let the corre-
sponding determining functions be Ψ(q) and Ψ(q), with the obvious defi-
nitions for τE(q). We have already noted that for q → ∞, Ψ(q) has a finite
asymptotic slope logC max W, while Ψ(q) is parabolic. Therefore, their
asymptotic behaviors differ qualitatively. On the other hand, the behavior
of Ψ(q) and the τE(q) for small q depends only on 

〈
log W

〉
 and σ2 log W,

therefore it remains unchanged when log W is replaced by its normal
approximation. Hence the following consequences.

Since the moment of order q = 2/3 is likely to be covered by this
approximation, the conclusions Kolmogorov and Yaglom had obtained by
applying the “two thirds-law,” may well be essentially unchanged.

For q = 1, Ψ(1) need not equal 1. Also, τ′E(1) need not equal τE′(1). In
extreme instances (see the end of Section 4.2) they may have different
signs. It may happen that the “real” τ′E(1) is negative, meaning that the
cascade is non-degenerate, while τE′(1) is positive, suggesting that the
cascade is degenerate. The approximations of the values of Q and of the
αE may be even poorer.

A different lognormal approximation to W, to be called W , is achieved
by approximating Ψ(q) by a parabola Ψ(q) satisfying Ψ(0) = Ψ(1) = 0 and
having the correct slope Ψ′(1). The mean and variance of log W are deter-
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mined by the properties of Ψ(q) near q = 0. From the practical viewpoint,
all that is of direct interest is the portion of τE(q) that lies between q = 1
and q = αE; it follows that, when Ψ(q) is smooth and the original αE is
small, the error introduced by the lognormal approximation W  may well
be acceptable. Whenever such is the case, the various properties of
ε(�, L, 0) linked to DE, Q and αE turn out to be related, after all. Given the
inaccuracy inherent in experimental work, this implies that it may be nec-
essary to return to the situation that used to prevail when the single char-
acteristic parameter Q was believed sufficient. To the contrary, when the
original αE is large, and especially when it is infinite, the error in using W∼

is very large; the process of approximation changes the class to which
such a cascade belongs.

Digression. (This is another occurrence of a phenomenon also encount-
ered in Section A.1: the moments of exp V are very sensitive to appar-
ently slight deviation of V from normality.)

 APPENDIX

A1. Approximate versus strict lognormality; the differences are deep,
hence the use of approximate lognormality to calculate moments is
unsafe

Let us consider the following random variables: a normal (Gaussian)
random variable G, a Poisson random variable P and a bounded random
variable B obtained as the sum of a large number K of random variables
Bk = log Rk, each of which bounded by the same β < ∞. We want G, P and
B to be nearly identical. Since the mean and the variance are equal in the
case of P, they must be assumed equal for G and B. Finally, we want
G, P and B to be near identical. Therefore, the value δ common to mean
and their variance must be large. It follows that

〈
(eG)q

〉 
= exp(qδ + δq2/2) = exp[δ(q + q2/2)],

〈
(eP)q

〉 
= exp( − δ + δeq) = exp[δ(eq − 1)],

〈
(eB)q

〉 
≤ exp(qKβ).
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Thus, 
〈
(eB)q

〉
 increases at most exponentially with q, 

〈
(eG)q

〉
 increases more

rapidly than any exponential, and 
〈
(eP)q

〉
 more rapidly still. The expecta-

tions, equal respectively to 
〈
eG

〉
= exp(1.5δ) and 

〈
eP

〉
= exp(1.7δ), are

already very different. The coefficients of variation, defined as

〈
(eG)2

〉

〈
eG

〉
2

= eδ and

〈
(eP)2

〉

〈
eP

〉
2

= e(e − 1)2δ ∼ e3δ,

differ even more, and higher order moments differ strikingly. In short, it
may be that B and P are nearly normal from the usual viewpoint (which is
that of the so-called “weak topology”). But from the present viewpoint
they provide poor approximations to the normal distribution. However,
when q < 1 (for example, q = 2/3, as in the calculation of spectra) the dis-
crepancy is smaller.

{PS 1998. A fourth example of a manageable sequence of moments is the log-
gamma distribution. The reduced gamma r.v. of parameter δ, to be called
Gamma (δ), is defined as having the density uδ − 1e− u/Γ(δ). It is well
known that the sum of two independent gamma r.v. of parameters δ′ and
in exponent δ′′ is a gamma r.v. of parameter δ′ + δ′′. Let the reduced log-
gamma r.v. be defined as e− σGamma(δ)/

〈
e− σGamma(δ)

〉
. The q-th moment of

the log-gamma is finite if and only if q > − 1/σ ; when finite, its value is

〈
(e− σGamma(δ))q

〉 
= ⌠⌡

∞

0
uδ − 1e− ue− uσqdu/Γ(δ) = (1 + σq)− δ.

In particular, irrespective of δ, σ ≤ − 1 yields 
〈
e− σGamma(δ)

〉
= ∞. That is〈

W
〉 

= 1 cannot be insured unless σ > − 1. To my knowledge, the four fam-
ilies listed in this paper and this PS are the only ones that are endowed
with explicit analytic expressions, have some finite moments and possess
the property of being closed under addition.}

A2. On Orszag's remark concerning the determination of turbulence by
its moments

Homogeneous turbulence is presumed to be determined by its moments,
and the bulk of the theory based on the Navier-Stokes equations is
devoted to efforts to determine these moments theoretically. Is intermit-
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tent turbulence also so determined? To answer, note that a random vari-
able can have the same moments as the lognormal distribution, without
itself being lognormal. Feller 1951 vol. 2, p.227 of the 2nd edition, credits
this example to Heyde 1963. {P.S. 1998. In fact, the lognormal was the
very first example to be mentioned in the original (1894) paper on the
moment problem; see Stieltjes 1914.}

The reason for this indeterminacy is that the moments of a lognormal
eG increase so fast that ∑[

〈
exp(2qG)

〉
]− 1/(2q) < ∞, which expresses that the

lognormal distribution fails to satisfy a necessary condition due to
Carleman. Orszag 1970 has observed that a corollary of this indetermi-
nacy is that, if intermittent turbulence were indeed lognormal, it would
not be determined by its moments. On the other hand, suppose that
Yaglom's εr is the product of independent bounded factors. In that case,
the moments of intermittent turbulence do satisfy the Carleman criterion;
therefore, the indeterminacy noted by Orszag vanishes. (Note added during
revision. Novikov 1971, p.235, contains a remark to the same effect.)

A3. The dimension exponent, as introduced through the number of
eddies of side r within which dissipation is concentrated

The purpose of this section of the appendix is to show that among
subeddies of side r, most of the dissipation is concentrated in a subset of
about (L/r)DE subeddies.

Preliminary example: binomial weights. Let

Pr{W = 0} = 1 − p and Pr{W = 1/p} = p,

so that D = − logCp. Then εL(x, L, η) = 1 factors into two terms: (a) the con-
tents of a non-empty eddy, namely

(p− 1)logC(L/η) = (L/η)logCp = (L/η)− D,

and (b) the number of non-empty eddies of side η contained in a big eddy
of side L. Since E εL(x, L, η) = 1, the expectation of this last number must be
(L/η)D.

Second example: lognormal weights and cubic eddies. Let us begin with
the low frequency factor εr(x, L, r). With W lognormal as in Section 4.3,
log εr is Gaussian with variance µ log(L/r) and expectation (µ/2) log(L/r).
To simplify the notation, we shall denote εr by V. When L/r�1, this
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lognormal factor has the feature that its expectation is due almost exclu-
sively to occasional large values. As a result, one can select a function
threshold (L/r) in such a way that values of V below threshold (L/r) are
negligible. Specifically, if one defines V∼ by

V
∼

=
⎧ 
⎨ 
⎩

V when V > threshold (L/r),

0 otherwise,

then EV∼ is arbitrarily close to 1. Let us prove that such a result is
achieved when C is a function subjected to the sole requirement
limr → 0C(L/r)/[ log(L/r)]1/2 = 0, and when the “threshold” function is
chosen to satisfy

threshold (L/r) = (L/r)µ/2 exp{ − C(L/r)
√
µ log(L/r) }.

Indeed,

〈
V

〉
= 0.1√

2rµ log(L/r)

⌠
⌡ exp

⎧ 
⎨ 
⎩
x − [x + (µ/2) log(L/r)]2

4µ log(L/r)

⎫ 
⎬ 
⎭

dx,

with an integration range from log[ threshold (r, L)] to ∞. The expression
in braces transforms into

 
− [x − (µ/2) log(L/r)]2

4µ log(L/r)
,

and by changing the variable of integration to

z = [x − (µ/2) log(L/r)] [2π log(L/r)]− 1/2

we obtain

〈
V
∼〉 

= (2π)− 1/2⌠
⌡ exp( − z2/2)dz,

with an integration range from − C(L/r) to infinity. As L/r → ∞, 
〈
V

〉
→ 1,

which shows that the contribution of other values of V to εr is
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asymptotically negligible, and that the above choice of N was indeed
appropriate to make V arbitrarily closely approximated by V∼. From now
on, one can consider the (L/r)3 cells of side r that lie within a cube of side
L, and divide them into those for which V > threshold (L/r), and those for
which V < threshold (L/r).

For the former, the expectation of their total number is

(L/r)3Pr{V > threshold (L/r)}.

In terms of the reduced Gaussian random variable

[ log V + (µ/2) log(L/r)]
√
µ log(L/r) = G,

the above probability becomes

Pr{G > 
√
µ log(L/r) − C(L/r)}.

Using a well-known tail approximation of G, the expected number in
question is approximately equal to

(L/r)3 exp[ − (µ/2) log(L/r)]
√
2πµ log(L/r)

=
(L/r)3 − µ/2

√
2πµ log(L/r)

=
(L/r)D

√
2πµ log(L/r)

.

(Note that this last approximation is independent of C. )

With cubic eddies replaced by straight segments, the only change in
the above formulae is that the factor (L/r)3 is replaced by L/r and hence
3 − µ/2 by 1 − µ/2 = D1.

As for the cells in which V < threshold (L/r), we want to show that
their total contribution is negligible. The proof involves the high fre-
quency factors εr(x, r, η) and an application of the ergodic theorem.
Details need not be given here.

General weights W. The assertion is that the number of eddies that are
not nearly empty is about (L/r)D. The proof cannot be given, but its prin-
ciple can be indicated. The quantity 

〈
W log W

〉
 is related to Shannon's

concept of entropy-information, and it enters here because our problem
can be restated in terms of information-theoretical asymptotical
equiprobability; see Billingsley 1967.
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A4. Introduction to a model of intermittency based on the limiting
lognormal processes, in which eddies are randomly generated and the
partition of dissipation is continuous

My earlier paper on intermittency M 1972j{N14}, involved a departure
from the assumption of Section 2.1: the grid itself was made random, and
was generated by the same model as the distribution of dissipation. The
purpose of this section is to provide a transition from this to the earlier
work.

Our point of departure consists in a prescribed grid of eddies, and a
canonical cascade with lognormal weight W: log ε(x, L, η) is Gaussian with
variance µ log(L/η) and expectation − (µ/2) log(L/η). We know that the
correlation of ε is approximately proportional to d− Q, with Q = µ. Because
the eddies were prescribed, the random function ε(x, L, η) is non-stationary
and discontinuous: between an eddy and its neighbors, there may be very
large discontinuities. Both non-stationarity and discontinuity are of course
quite unrealistic. One may instead demand that log ε(x, L, η) be Gaussian
and stationary, with the added restriction that it should be continuous and
vary little over spans of order shorter than η. This will ensure that
ε(x, L, η) is nearly identical to ε(x, L, r). It remains to ensure that ε(x, L, η)
has a correlation proportional to d− Q. The simplest way to achieve this aim
is to require ε(x, L, η) to have a truncated self-similar spectral density,
namely a spectral density equal to η/2ω when 1/L < ω < 1/η, and equal
to zero elsewhere. The resulting model may be viewed, as combining self-
similarity with the maximum retrievable portion of the Kolmogorov third
hypothesis.

The properties of ε(�, L, η) relative to this model can be summarized
as follows. The dimensions continue to be DE = E − µ/2 and the cascades
are never regular: for µ < 2/E, they are irregular with αE = 2/µ, while for
µ > 2/E, they are degenerate. Compared with a canonical cascade with a
lognormal W, the main differences involve the values of certain numerical
constants.

A5. Remarks on Kolmogorov's third hypothesis of lognormality

This hypothesis states that, for every cube of center x and side r > η,
εr(x, L, η) follows the lognormal distribution, the variance of log εr being
equal to µ log(L/r). Within Yaglom's context of prescribed eddies, either
canonical or microcanonical, it will be shown that this hypothesis cannot
hold. Then, it will be shown that in a wider context this hypothesis is
tenable only if one makes unlikely additional conditions.
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In the context of prescribed microcanonical eddies, the difficulty is the
following. To say that log εr is normal is to say that a finite number of the
independent random variables log Wk add to a Gaussian distribution, and
it follows, by a classical theorem (Lévy-Cramèr), that the log Wk must
themselves be Gaussian, i.e., unbounded. On the other hand, we know
that microcanonical weights must be bounded. Thus Kolmogorov's
hypothesis cannot apply strictly for any fixed value of r, not even for r = η.

In the context of prescribed canonical eddies, the source of the diffi-
culty is different. One can show that, in a canonical context, the corre-
lation of every pair of εr is positive. (To be more precise, Yaglom's rough
derivation suggests that the correlation is also positive in a microcanonical
context. But a careful investigation, too long to be worth reporting, shows
that for some value of d it must be negative. This follows from the fact
that

〈
W sW t

〉
< 1; see Section 3.6.) To the contrary, we shall see momen-

tarily that the Kolmogorov hypotheses imply that at least some of those
correlations are negative. Thus, the Kolmogorov hypotheses might con-
ceivably hold for r = η, but the hypothesis relative to several values of r
are incompatible, meaning that overall the hypotheses are internally incon-
sistent.

More generally, the joint assumptions that the random variables
log εr(x, L, η) are normal for every r, with σ2 log εr = µ log(L/r) and〈 

log εr

〉 
= − (µ/2) log(L/r), are incompatible with any model that leads to a

positive reduced covariance for ε
η
. Indeed it would follow from these

assumptions that r3εr, the mass of turbulence in a cube, satisfies

〈
[r3εr(x, L, η)

q
〉 

= r3q − q/2(q − 1)µLq/2(q − 1)µ.

When r reaches its maximum value L, the above moment will reduce to
r3q, for all q. This is as it should. But the nature of convergence to this
limit must be examined more closely. For example, let us subdivide our
cube into (say) 23 portions. When q/3 > 2µ, the exponent of r in the above
expression is negative, implying that the value of the ratio〈
(r3ε r)

q
〉
/

〈
[(r/2)3ε r]

q
〉

is less than 23. From an elementary result of proba-
bility, this means that at least two of our subcubes must have a negative
reduced correlation. This conclusion, and hence Kolmogorov's form of the
lognormal hypothesis, is inconsistent with the assumed positive covariance
of ε

η
(x, L, η). (Note added during revision. This inconsistency is observed in

Novikov 1971, p. 236. The author notes the contradictory behavior of the
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quantities he designates as µ
ρ
; however, having noted the contradiction,

he does not resolve it.)

This is the moment to point out that in my limit lognormal model (M
1972j{N14} and Section A4) the above inconsistency is avoided, because
every formerly misbehaving moment turns out to be infinite.

A6. Footnote added in 1972, during revision

This text appeared as footnote to Section 2.2 of the original M 1974f, but deserves
being changed into an appendix and discussed in the Annotations that follow.

A referee made me aware of Novikov 1969 and 1971 which helped put
[my] results in focus. Novikov 1971 p. 236 observes that the moments of ε
do not tend towards those of the lognormal distribution. Yet, “in the
same manner as in [a textbook by] Gnedenko, it may be shown that the
limit distribution is lognormal.” The puzzling discrepancy between these
results appears to be due to use of conflicting approximations. Earlier,
Novikov 1969, p. 105 states that “all moments (if they exist) must have a
power law character.” The phrase in parentheses raises the possibility that
moments may not exist, but this possibility is regrettably dismissed and is
not discussed again.
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&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

 Editorial comments.  The notation was brought close to the current usage.
The letter Γ denoting a base was replaced by b; the letter h for the expo-
nent in a moment was replaced by q; the expression f(h) by τ(q) (my old
function f(h) is now ordinarily denoted by − τ(q) and the notation
τ(q) = − τ(q) avoids having to change signs throughout this paper); the D
identifying a domain was replaced by � the letter i for the embedding
dimension was replaced by E; the letter ∆ for the intrinsic fractional
dimension was replaced by D; the expression V* was replaced by V∼, and
the integer N in Section 4.8 was replaced by C. A footnote to Section 2.2 in
the original was made into Appendix A.6. The other footnotes were incor-
porated in the text. A few lengthy ones are printed in smaller size letters.

Comment on Appendix A6. This Appendix acknowledges that E.A.
Novikov and I simultaneously showed that the q-th moment of the
average dissipation ε within a volume is the volume's size raised to some
power τ(q). However, the derivation of this τ(q) is only the first of three
stages of the theory of multifractals.

Elaborating on M 1969b {N13}, this chapter goes on to a second step
and concludes that the central limit theorem is far from being sufficient
from the viewpoint of the study of multifractals, that is, the distribution of
ε is not approximately lognormal to a significant degree. M 1974c{N16}
takes a further third step. It uses the Cramer large deviations theory,
hence the Legendre transform, to obtain the multifractal function f(α) via
the probability distribution of ε plotted on suitable log-log coordinates.

To the contrary, Novikov stopped at the first step. He did observe the
difficulties τ(q) may present and the fact that its non-universality contra-
dicts lognormality. But he did not resolve these difficulties. In terms of
the function f(α) (which he did not consider), his text implied that the
graph of f(α) is in every case a parabola.

Other scientific comments. Additional comments on this chapter are
combined with comments at the end of Chapter N16.

How did M 1974f come to be written and published. This paper was hard
to write, and it is hard to read because it is far too detailed for a first
formal work on a new topic. That counterproductive complication was
largely the unintended result of a very long refereeing process. The anno-
tation “received 1 March 1972” refers the date of the final draft. An editor
of the Journal of Fluid Mechanics, Keith Moffatt, invited a paper after
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hearing me sketch M 1967k{N12} at Kyoto in 1966. Thus, M 1974f was
preceded by at least two very distinct versions ranging back to 1968.
Among successive referees the Journal called upon, several professed utter
bafflement about the problem and the solution. Other referees made nice
noises, but asked not to be called again. One referee who professed com-
petence picked endlessly at insignificant issues, and chastised me for
incompleteness. (The next significant step in the theory of multifractals
did not come until the mid 1980s.) All this encouraged endless rewriting
that became increasingly “defensive” and counter-productive.

Fortunately, Keith Moffatt showed great foresight and kindness, but
everything that sounded like "philosophy" had to be removed. As a
result, the text that J. Fluid Mech. received on March 1, 1972 left a
remainder. After revision, this became a typescript of 90 tightly packed
pages, titled The Geometry of Turbulence. My copy indicates it was received
by J. Fluid Mech. on August 27, 1974, but I changed my mind. One part
became M1975F and a second was largely incorporated in M 1977F and M
1982F{FGN}. Its summary, slightly abbreviated, is reproduced as Section
N4.2.




