Statistical Models & Turbulence (La Jolla, CA, 1972)
Springer, 1972, 333-351 N14

Lognormal hypothesis and distribution
of energy dissipation in intermittent turbulence

e Editorial changes. The type-offset original of this chapter is titled “Pos-
sible refinement of the lognormal hypothesis concerning the distribution of
energy dissipation in intermittent turbulence.” That old text repeatedly
refers to Kolmogorov's third hypothesis as “appearing untenable” or as
being “probably untenable.” After this text had been typeset, and when it
was being copy-edited, I shortened the title and took the liberty of skip-
ping the qualifiers “appear” or “probably.” Their use was probably moti-
vated by the profound admiration for Kolmogorov (expressed in Chapter
N2, Section 5), by my consistent reluctance to belabor error, and probably
also by expected disapproval had I done so.

The exponent g was denoted by p in the original, and the Sections
were not numbered. An earlier version of this paper had the more
straightforward title, “Note on intermittency obtained through multipli-
cative perturbations.” An excellent “advance abstract” of this chapter is
provided by the following excerpts from this earlier version. °

4+ Advance abstract. My very modest aim is to analyze the assertion
common to [several authors], that Kolmogorov's €, and more generally the
local intensity of turbulence, should be expected to follow the lognormal
distribution ... Unfortunately, except for ... cases of limited interest, [the
usual] derivation [of lognormality] will be shown to be seriously in error,
and as a consequence the earlier [authors'] assumptions of lognormality
are seriously flawed. Indeed, multiplicative perturbations predict a distrib-
ution that not only grossly differs from the lognormal, but also depends
upon details in the process of multiplicative perturbations that is being
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used. For those concerned with experimental check, this last aspect,
naturally, is disquieting.

My remarks apply equally to [a variety of other] subject matters but I
shall phrase them in terms of turbulence.

Multiplicative perturbations in general. [The authors cited], as I read
them, argue that when turbulence is intermittent, its local intensity at a
point in space-time (Kolmogorov's €) can be considered the multiplicative
resultant of many independent and stationary random functions, each cor-
responding to a different range of eddy wavelengths. The resultant of the
eddies whose frequency A satisfies 1 <A <f is thus an approximate local
intensity, which will be designated as X'(f, f). The purpose of models of
this kind is to list assumptions from which one can deduce the properties
of X'(t,f) and, much more important, the properties of local averages of
X'(t, f), as defined in one dimension by the integral X(t, f) = Iy xs, fds....

The reason averages are important is that even the most refined meas-
urements concern zones that are much larger than the range of viscosity in
a fluid... The most important issue is the extent to which the properties of
X(t,f) depend on f when f is large, and how they behave as f— 0. Also,
given that [all] models are unavoidably artificial and oversimplified, an
important issue for such models is the extent to which the properties of
X(t,f) continue to depend on the original mechanism postulated for the
perturbations.

Roughly, [the previous authors invoke], in succession, a central limit
theorem, a mean value theorem and finally a law of large numbers. [But
this argument] happens to be grossly incorrect, except that the lognormal
law does apply to X(t,f) as a rough approximation for finite f when || is
not much above 1/f, and for arbitrary f when the effects of high frequency
eddies are very weak — in a sense to be defined below. In all other cases,
the correct distribution of X(t, ) is far from lognormal; in many ways, it
is a more interesting [distribution]. In particular, we have the striking
result that if the high frequency eddies are sufficiently strong, — again in a
sense to be defined below — [and if f is large, then] X(¢, f) [nearly] van-
ishes, save under circumstances of minute probability, under which it may
be enormous. To get farther [away] from ... [asymptotic] averaging would
be difficult. +

4+ Abstract. Obukhov, Kolmogorov and others argued that energy dissi-
pation in intermittent turbulence is lognormally distributed. This hypoth-
esis is shown to be untenable: depending upon the precise formulation
chosen, it is either unverifiable or inconsistent. The paper proposes a



N14 ¢ ¢ LOGNORMAL HYPOTHESIS AND TURBULENT DISSIPATION 295

variant of the generating model leading to the lognormal. This variant is
consistent, appears tractable, and for sufficiently small values of its unique
parameter u it yields the lognormal hypothesis as a good approximation.
As U increases, the approximation worsens, and for high enough values of
U, the turbulence ends by concentrating in very few huge “blobs.” Still
other consistent alternative models of intermittency yield distributions that
differ from the lognormal in the opposite direction; these various models
in combination suggest several empirical tests. +

1. INTRODUCTION

A striking feature of the distributions of turbulent dissipation in the
oceans and the high atmosphere is that both are extremely “spotty” or
“intermittent” in a hierarchical fashion. In particular, both are very far
from being homogeneous in the sense of the 1941 Kolmogorov-Obukhov
theory. Nevertheless, many predictions of this classic theory have proved
strikingly accurate. Self-similarity and the k%% spectrum have not only
been observed, but are found to hold beyond their assumed domain of
applicability. An unexpected embarrassment of riches, and a puzzle!

For many scientists, studying turbulence is synonymous with
attempting to derive its properties, including those listed above, from the
Navier-Stokes equations of fluid mechanics. But one can also follow a dif-
ferent tack and view intermittency and self-similar statistical hierarchies as
autonomous phenomena.

Early examples of this approach in the literature are few in number,
but they go very far back in time, and have involved several disciplines.
In the field of cosmology, intermittency had already been faced in the
eighteenth century, and its study underwent bursts of activity in the
period 1900-1920 and today. Furthermore, concern with intermittency
arose, independently and nearly simultaneously, in the fields of turbulence
(including work by Obukhov, and later by Gurvich & Kolmogorov,
Novikov & Stewart and Yaglom), in the study of geomorphology — espe-
cially in the study of the distribution of rare minerals (including work by
deWijs and Matheron) — and finally in my own work concerning many
non-thermal noises. They go under such names as “burst noise,” “impulse
noise,” “flicker noise,” and “ 1/f noise,” and may be considered forms of
electromagnetic turbulence. As it happens, despite obvious differences, all
the scientists working in these fields have followed the same few generic
paths. What has brought these various applications together is not yet
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clear: it may be either their common underdevelopment or genuine
kinship.

We shall be concerned with one of these generic paths, which may be
designated as the “method of self-similar random multiplicative
perturbations.” It had two widely distinct sources, the first was a footnote
remark in Landau & Lifshitz 1953 concerning the 1941 Kolmogorov theory
of self-similar homogenous turbulence. This remark was taken up by
Obukhov 1962, and discussed and developed by Kolmogorov 1962,
Yaglom 1966 and Gurvich and Yaglom 1967. The second source lay in
works by deWijs 1951, and then Mathéron 1962 and his school, on the dis-
tribution of rare minerals.

Using the vocabulary of turbulence, let n and L designate the
Kolmogorov micro- and macro-scales, and let (x, 7, n, L) be the average
energy dissipation over the cube of side r and center x. Obukhov and
Kolmogorov hypothesize, and de Wijs and Yaglom attempt to derive, the
property that log[e(x, 7, n,L)] is a normal random variable of variance
equal to A(x, t) + u log (L/r), where the term A(x, t) depends on the char-
acteristics of the large scale motion and u is a parameter, possibly a uni-
versal constant. The above assertion is usually called “Kolmogorov's third
hypothesis.”

In addition, the expectation of log € is ordinarily assumed equal to
—(u/2)log(L/r) — A(x, t)/2. Finally, the averages of e(x,7,n,L) corre-
sponding to cubes whose scale equals the micro-scale of turbulence, are
assumed to have a certain correlation function of the form required by
self-similarity;

E[e(x +Ax, 0, 0, L) e(x, 0, 0, L) ~ (L/ |ax|)" for large Ax.

I will call this last expression the “Gurvich-Zubkovskii correlation.”
Observe that neither this correlation nor Kolmogorov's “third” hypothesis
involve n explicitly, which expresses that they obey Kolmogorov's
“second” hypothesis of 1941, which he had maintained unchanged in 1962.

The purpose of the present paper is, first, to show that the above
“third hypothesis” raises serious conceptual difficulties which make it
untenable; secondly, to propose an improved alternative. The practical rel-
evance of my criticism has not yet been established. It depends upon the
value of u, and each field of application will have to investigate it specif-
ically.
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{P.5.1998 Following the probabilists' custom, “random variable” will
be shortened to “r.v..”}

2. CRITIQUES OF VARIOUS FORMS OF LOGNORMALITY

Allow me to make the historical background more precise: Obukhov intro-
duces lognormality as an “approximate hypothesis:” on the ground that
the lognormal “represents any essentially positive characteristic.”
Kolmogorov treats lognormality as a “third hypothesis” to be derived
from other assumptions. And deWijs and Yaglom derive lognormality
from a “cascade” argument. Each approach requires a separate reexam-
ination and critique.

Obukhov’s approximate hypothesis. Because it is approximate it can only
be examined on pragmatic grounds. Its weakness is that it cannot support
the elaborate calculations of moments which have been built on it, because
the population moments of the random wvariable (r.v.) exp(Y) are
extremely sensitive to small deviations of Y from normality.

For example, consider a normal random variable G, a Poisson r.v., P,
and a Bernoulli r.v., B, obtained as the sum of a large number H of
binomial r.v.'s B,,. When their respective means and variances are equal
and large, those three r.v.'s are indeed considered by probabilists as being
“nearly identical.” But this concept of “near identity” tells little about
higher moments of the same order of G, P, and B. A fortiori, the moments
of ¢, ¢" and ¢® of all orders are so influenced by the tails of the various
distributions that their values may be very different. For example, suppose
they all have the same mean 6 and variance §, and denoted the possible
values and probabilities of the binomials B, contributing to B by B’, B”, U
and 117, with T'B’H<6, T”B”B < §, and 1B’ > T1”B”. We then have:

E(°)" = exp(qd + 64°/2) = exp[6(q + 4°/2)]
E(e")" = exp(— & + Se?) = exp[6(e" — 1)]
E(e®)7 = exp E(e*h)T = (Ee"h)" = (77 + & PH,

For large 9, E(e®)" increases like e™™% that is, less rapidly than 1 E(e°)
increases more rapidly, and E(e")" even more rapidly.

Even for g=1, one finds different values, respectively
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E(e®) = exp(1.58) and E(e") = exp(1.78).
The coefficients of variation are
Gy2 P2 .
E[(EG)E — ¢ and E[(ep)l _plem 1P 38
[E(e7)] [E(e)]

They differ even more, and higher order moments differ strikingly. In
short, as soon as one takes exponentials, B and P cease to be good approxi-
mations to the normal G. It follows that the significance of moment calcu-
lations under Obukhov's approximate hypothesis of lognormality is
entirely unclear.

This last finding must be reviewed from the viewpoint of the observa-
tion, due to Orszag 1970, that the moments of the lognormal increase too
fast to satisfy the so-called Carleman criterion. Consequently, lognormal y
intermittent turbulence is not determined by its moments. The moments of
Poisson intermittent turbulence increase even more rapidly, while those of
the binomial do satisfy the criterion. However, we have noted that this
property is sensitive to minor deviations from normality, so I hesitate to
consider this question solved.

Kolmogorov's suggestion that the lognormal hypothesis be considered as
strictly valid. This suggestion encounters a different kind of difficulty.
Indeed, let us show that the assumption that the r.v.'s log e(x, r, n, L) are
normal for every x and every r is incompatible with the assumption that
the correlation of € follows the self-similar (Gurvich-Zubkovskii) form.

Indeed, if A(x, t) is replaced by the constant term exp €, the lognormal
hypothesis yields:

E[r3e(x, r,n, L) = e130 9@ = Du/2p g = Du/2,

When r reaches it maximum value, which is r=L, all these moments
reduce to Eqr3q, as they should. But we must examine more closely how
they tend to this limit. Suppose t >3 and focus on the second moment
(9=2). The exponent of r in the above expression takes the value 6 — < 3.
This inequality expresses that, when r is doubled, E[r’¢]* is multiplied by a
factor that is smaller than 8. On the other hand, the fact that the Gurvich-
Zubkovskii correlation is positive implies that the factor in question must
be greater than 8. This is a contradiction, as previously announced.
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When u < 3, the contradiction moves up to higher moments, namely to
moments such that g satisfies

3q—q(qg—1)u/2<3, ie. q/3>2/p.

This last criterion will be encountered repeatedly in the rest of the paper.

There is another internal contradiction. Consider the variables log €
corresponding to 8 neighboring small cubes obtained by subdividing a
bigger cube. When they are lognormal, consistency also requires the var-
iables log € corresponding to the big cube to be lognormal. However,
sums (and hence averages) of independent lognormal variables are them-
selves not lognormal, which suggests that when the eight small cubes's
variables are nearly statistically independent, the above requirement is vio-
lated. In particular, when u is very large, the correlation between variables
over neighboring small cubes is very small, which suggests that the
dependence is small and that the said requirement is violated.

To sum up, for moderately large values of U, the lognormal hypothesis
could only be consistent with some special rule of dependence for which
the correlation function is not positive. I can't imagine any such rule, and
circumstantial evidence to be described below makes me doubt such a rule
exists. This suggests that Kolmogorov’s strict hypothesis is untenable.

Lognormality obtained as the conclusion of the deWijs-Yaglom (WY) cascade
arguments. One may expect the third form of lognormality flawed. Let us
review WY step by step. First step: pave space with a regular grid of
eddies: the elementary eddies are cubes of side 1, eddies of the next stage
are cubes of side 21, so each contains 8 elementary eddies, etc. Second
step: assume that r=n2" for some integer n while L = n2N for some integer
N, and rewrite &(x, r, 1), L) as the product:

e, r,n, L) e62r,nL) ex2" 'r,n,L)
e(x,2r,n, L) ex,4r,n,L)  gx, 2, n, L)

E':(X/ L/ n/ L)

Third step: identify the last term as €, and assume the ratios in the above
expression to be independent identically distributed r.v.’s. Fourth step: one
applies the central limit theorem to the sum of the logarithms of the above
rations. Conclusion: when the cube of center x and side r is one of the
above eddies, the distribution of the corresponding €( x, r,n,L) is
lognormal.
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Our criticisms of Obukhov's and Kolmogorov's approaches extend to
the WY generative model. In addition, WY predictions concern the eddies
themselves, so that direct verification is impossible. On the other hand,
when our cube of center x and radius r is not an eddy, €(x,, 1, L) is not
lognormal. For example, when r is large and one cube overlaps several big
eddies, e(x, 7, 1, L) is the average of several independent lognormal vari-
ables; as we have seen this implies it is not lognormal. To establish the
distribution of € over an arbitrary cube, one would have to average the
distribution corresponding to cubes having the same r and overlapping
various numbers of eddies.

3. AN ALTERNATIVE TO LOGNORMALITY: LIMIT LOGNORMAL
RANDOM PROCESSES

The basic difficulty with the WY cascade argument is, I think, due to the
fact that it imposes local conservation of dissipation. This is expressed by the
fact that various random ratios of the form &(x, r/2, n, L)/e(x,r, n, L) corre-
sponding to different parts of an eddy are required to have an average of
one. Especially when p is large, this requirement implies that such ratios
are strongly negatively correlated, a feature which is foreign to the
Gurvich-Zubkovskii correlation, but (as we saw) is needed in the
Kolmogorov argument.

Conservation on the average. By way of contrast, the variant of the
model of multiplicative perturbations proposed in the present paper can
be characterized by the feature that conservation of dissipation is assumed,
not on the local, but only on the global level. That is, this model visualizes
the cascade process as being combined with powerful mixing motion, and
with exchanges of energy that disperse dissipation and free the above
ratios from having to average to one. Moreover, in order to better satisfy
self-similarity, the hierarchy of eddy breakdowns is taken as continuous
rather than discrete. Under these conditions, one can relate € to a sequence
of random functions (r.f's) F'(x,A,L) such that the logF'(x, A, L) are
Gaussian, with the variance plog(L/A), the expectation — (u/2)log(L/A)
and a spectral density equal to p/2k for 1/L <k <1/A, and to 0 elsewhere.
Consequently, the covariance C(s, A) of log F'(x, A, L) will be assumed to
satisfy C(s) =limp —e C(s, A) =— u log(21e’s/L). (Here, v is the Euler con-
stant, whose value is about 0.577.)

For fixed x and L, F'(x, A, L) is clearly a sequence of lognormal r.v.'s

whose expectation is identically 1, while their variance, and hence their
skewness and their kurtosis, all increase without bound as A — . The
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quantity F(x,r, A, L) will then be defined as the integral of F’ over a cube
of center x and side r (which need not be any specific cube designated as
“eddy”), and will be viewed as r’e(x, 7, A, L), namely as the approximate
total dissipation that only takes account of perturbations whose wave-
length lies between A and L.

Note that, in contrast to the WY model, there is no specific grid of
eddies in the present model. One resemblance to WY is that when
n< A<r1 <r,< r3<L and 1’2/7’1 = r3/r , the ratios

F(x, 15, A, L) F(x, 13, A, L)
Foo A, L) % E(x 1y A, L)

have identical distributions. One difference is that those ratios need not be
independent. A second difference is that WY assume that randomness in
F(x, L, A, L) lies entirely beyond the model, while in the present variant the
“A (x,t) ” is in part due to eddy action.

Our task is to derive the distribution of F(x, r, A, L). In particular, the
smallest value of A is 1, and we must check whether or not the distrib-
ution of F(x,r,n,L), for r>n, is independent of n. If it is, then
Kolmogorov's second hypothesis, unchanged from 1941 to 1962, is satis-
fied.

A delicate passage to the limit. Our procedure will be to keep x and r
fixed and view F(x, 7, A, L) as a r.f. of A. From the mathematical viewpoint,
this r.f. happens to be a “martingale” and, of course, F > 0. Doob's classical
“convergence theorem for positive martingales” (Doob 1953, p. 319) states
that limy ¢ F(x, 7, A, L) =F(x, r, 0, L) exists. This result suggests it may be
legitimate for small but positive A say for A =1, to view F(x, 7, A, L) as dif-
fering from F(x, r, 0, L) by a “perturbation term.”

However, the convergence theorem allows two possibilities. {P.S.
1998: This is a major but unavoidable complication.} The limit may be
either non-degenerate, that is, have a positive probability of being finite
and positive, or degenerate, that is, almost surely reduced to 0 {P.S. 1998:
In the former case, the expectation of the limit is 1. In the latter case, the
expectation of the limit is 0, despite the fact that the limit of the expecta-
tions is 1.}

When F(x, 1,0, L) is nondegenerate, then for small but positive values
of A, such as A =n, a perturbation term dependent on A is required, but
one may consider that Kolmogorov's second hypothesis holds.
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But when F(x, 7,0, L) is degenerate, then for small A, F(x,r, A, L) either
nearly vanishes, with probability nearly 1, or is extraordinarily large, with
a very small probability. This last probability tends to zero with A, but it
is finite if A >0, which explains why the normalizing constraint
EF(x,t,A,L)=1 could be imposed without contradiction. Nevertheless, the
perturbation term is non-negligible, so F(x, 7,0, L) is a bad approximation
and Kolmogorov's second hypothesis fails. The preceding alternative
shows the importance of determining which of the above alternates holds
for given . More precisely, we shall seek when and to which extent the
lognormal approximation to F(x, #, L) is reasonable.

First main result. F(x,r,L) is degenerate when L >6, and nondegenerate
when U <6.

Second main result. In the nondegenerate case [ <6, the moment
EFi(x,r,0,]) is finite when p < 6/ and infinite when p > 6/4.

This behavior suggests that, for large values of u ,
Pr{F(x,r,0,L) > u} ~C(r, Lyu” M.

Thus, as y—0,F(x,r,0,L) acquires an increasing number of finite
moments, which are shown to converge towards those of the lognormal.
This result constructively establishes that for small u, the cascade scheme
of deWijs and Obukhov can be modified so as to avoid the difficulties that
have been listed above without significantly changing the prediction. For
large U, on the other hand, the required changes are significant.

The transition criterion p=6/q was already encountered in the dis-
cussion of the inconsistency of Kolmogorov's strict hypothesis. Those same
high moments that seemed to behave inconsistently no longer do so here.
The reason is that in the present model they are infinite throughout.
Proofs of the above assertions will be given in the following two sections;
each uses specific mathematical tools appropriate to its goal.

- -
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FIGURE C14-1.

The graphs found on the next three pages are computer simulated
approximations to one-dimensional self-similar limit lognormal r.f.'s
F(x,r,A, L, n). The are plotted for successive values of x, each a multiple of r.

Method of construction: Define F'(x, A, L= 107, U=2) as a Gaussian r.f. for
discrete x with 1 <x <560,000, with a spectral density that is approximately
equal to 1/k for 1/L<k<1/A. This function was simulated on the IBM
System 360/Model 91 for selected values of p and A, and F(x, 7, A, L, ) was
computed for x multiple of 1000, using the formula Z."[F'(x, A, 107, 2)]*/2 The
ordinate is the ratio R(x, A, i) between F and the median of the values of F
along the sample. For each p, the output of the program is a Calcomp tracing
across a broad strip of paper. All the programs were written by Hirsh Lewitan

using the fast fractional Gaussian noise algorithm described in M 1971f.

On the next three pages, portions of these graphs are shown for
H=05,pu=1, and pu =4, respectively, with A decreasing down the page.

Analysis of the results. The theory predicts that when p is small (graphs A,
B, and C), the ratio R (x, A, t) converges to a limit. The simulations clearly
confirm that R soon ceases to vary. The ostensible limit is clearly non-
Gaussian, but not extremely so.

As 1 increases (graphs D, E, and F), the point of ostensible convergence
moves towards decreasing values of A, and the non-Gaussian character of the
ostensible limit of R becomes increasingly apparent. In particular, an
increasing proportion of the cumulated F becomes due to a decreasing number
of sharp peaks and blobs. (The peaks are truncated at 10 for the sake of legi-
bility, but it was decided not to plot log R instead of R. )

Finally, =2 (graphs G, H, and I) is the critical value of y in one dimen-
sion (as 4 =6 was in three dimensions). Fron this value on, R ceases to con-
verge to a limit. This lack of convergence is clearly seen on this simulation.
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4. THE LIMIT LOGNORMAL MODEL FOR u > 6: DEGENERATE
LIMIT
Our argument will proceed in three steps.

First step: In very skew lognormal distributions, the expectation is over-
whelmingly due to occasional large values. Therefore, let log F’ be
Gaussian with variance plog(L/A) and expectation —(u/2)log(L/A),
implying F' =1, and let N(A) be a function such that

)}imo N(A) =, while )}imo N(A)/ylog(L/A) =0.

Also define three functions, Threshold (A, L), F’,, and F’_ as follows:

Threshold (A, L) = (L/)\)“/2 exp[ — N(?\)\/u log(L/A) I;
if F'(x, A, L) > Threshold (A, L), then F;, =F and F/_ =0
if F’(x, A, L) < Threshold (A, L), then F}, =0 and F_ =F".

Finally, let F, and F_ be the integrals of F’, and F’_.

The motivation of the above definitions lies in the value of the expec-
tation

2
EF,(x,1,A, L) = _ [+ W/2) log(L/A)] } i

expyx
V21 log(L/A) J 4plog(L/A)

with integration from log{ Threshold (A, L)} to infinity. Transforming the
integrand into

ol _ = (/) log(L/AP
4p log(L/A) ’

and then changing the variable of integration, we obtain
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3 00
EF,(x,7,A,F)=—L j fexp(— 2%/2) dz.

21 Y -N@

Conclusion. This form of EF_ shows that the contribution of F_ to F is
asymptotically negligible for A — 0, and that the above choice of N(A) has
been appropriate to insure that F is arbitrarily closely approximated by F,.
Moreover, for A >0, the function F’ is a.s. continuous, so the variation of F
is a.s. concentrated on those intervals where F'=F’,.

Second step: Over any cube of side A, F’ and therefore F’, is near con-

stant. Hence

+/

F(x, 7, A, L) ~A° ZF’ +(x A, L)

with summation carried out over those points of a regular lattice of side A
for which F’ > Threshold(A, L).

Third step: We suspect that there exist circumstances under which
limy_o F(x,7,A,L)=0. At least some of these circumstances may also
fulfill the stronger sufficient condition that in a cube of side L, the random
number of lattice sites for which F’, >0 tends to 0 almost surely. A suffi-
cient condition for the latter property is that the number in question
should tend to 0 on the average. This expected number equals

(L/A)" Pr {F(x, A, L) > Threshold(A, L) }.
In terms of the r.v.

log F’ + (u/2) log(L/A)
Julog(L/A)

which is a reduced Gaussian G, the Pr in the equation before last becomes
Pr {G > ulog(L/A) —N(A)}.

Using the standard tail approximation of G, the expected number in ques-
tion is about
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(L/A) expl - (u/2) log(L/A)]  (L/A) ™2

(21 log(L/A)  rulogL/a)

Note that this last approximation is independent of N(A) for A — 0.

For this expression to tend to 0 with A, a sufficient condition is p > 6.
(It is also a necessary condition, but this is besides the point; see below.)
It follows that, when p>6, limy_oF(x,7,A,L)=0 almost surely. Obvi-
ously, the limit is far from being distributed lognormally.

The preceding argument is heuristic, but it is the best I can do in three
dimensions. The one dimensional version of the limit lognormal process
is easier to study, and the heuristics can be made rigorous by using the
Rice formula for the extreme values of a random function. (This is one
more reason why it would be desirable to generalize the Rice formula to
higher dimensions.)

Extended to the case u <6, the preceding argument suggests that the
bulk of the variation of F concentrates in approximately (L/A)?~#/2 cubes
of side A. As A — 0, each cube either is eliminated or becomes subdivided
into numerous subcubes. This conclusion is correct, but the above
heuristic proof is mathematically very incomplete. The reason is that con-
dition limp_ X(A) <o does mnot exclude the possibility that
limy o X(A) =0 almost surely. Mathematical concerns of such nature are
usually dismissed by physicists, but in the present instance the misbe-
havior of F for i > 6 suggests that extreme care is necessary, and different
tools are needed to tackle u < 6.

5. THE LIMIT LOGNORMAL MODEL FOR pi<6: NON-DEGENERATE
LIMIT

In this Section, the moments EF/(x, r, 0, L) will be evaluated for integer g,
and then compared with the moments E[rF'(x,r, L)]. This last lognormal
r.v. provides some kind of link with the WY model. Indeed, it is tempting
to reason as follows: F’(x,r, L) varies little over a cube of side r, while the
ratio F'(x, A, L)/F'(x, r, L), which equals F'(x, A, r), varies rapidly. Averaged
over the cube of side r, this last ratio is bound to be close to its expecta-
tion, which is equal to one. This would imply that F'(x, 7, A, L) is approxi-
mated reasonably by rF'(x, r, L). We shall now check whether or not this is
really the case.
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The case q=2. Integrating over the domain where all coordinates of u
and v lie between 0 and r, we have

EF%(x, 1, A, L) = Effjfff exp[ log F'(u, A, L) +log F'(v, A, L) Jdu dv

= fjffffE exp[ log F'(u, A, L) + log F'(v, A, L) Jdu dv.

The expression in the exponential is a Gaussian r.v. of expectation
— plog(L/A) and variance 2 log(L/A) +2C(Ju—v/|, A). As a result,

EF*(x, 1, A, L) = f UUJ exp[C(u — v, A)]du dv.

Keep r fixed, with r<L, and let A — 0. The preceding integral con-
tinues to converge if and only if u/2 <3/2=23/g, in which case its limit
for A — 0 equals

Qme'/L) “Hf f H lu—v| “du dv.

Alternatively, carry the integration over the variables, u'=u/r and
v’ =v/r, whose values vary from 0 to 1. Then the above second moment
converges to

r® THLF[(2TTe)” “ffjjjf lu’ = v Haw av’].

By way of contrast, the would-be approximating lognormal rF'(x, r, L) has
a second moment equal to r* "ML, The ratio between the limit and the
approximate moment is the quantity in brackets. As u— 0, its integrand
and it prefactor [21Te’]”* both tend to 1, and so does the ratio itself.

Suppose that it is true that lima o EF'(x, r, A, L) = EF(x, r, 0, L), which
is unfortunately not established by the preceding formal calculation. If
this were true, it would follow that as p— 0, rF'(x, r, L) becomes a good
second order approximation to F(x, r, 0, L).
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The case g > 3. By a completely similar calculation, we find that
iff p/2<3/q, lim,_ EF(x, 7, A, L) < co.

This suggests that rF'(x, 7, L) is a good approximation to F(x,r, 0, L) up to
the order 6/u. When p is very small, F/ has very many finite moments
and its low order moments lie near those of the lognormal; one is tempted
to describe F itself as being near lognormal.

Now we must tackle the mathematical difficulty concerning the agree-
ment or discrepancy between lim, _ EF(x,r,A,L) and EF(x,r,0,L). I am
able to give only an incomplete answer to this question. Let pi(u) be the
largest integer satisfying t/2 < 3/p(¢). When g(u) > 3, which implies u <2,
a standard theorem on martingales (Doob 1953, p.319, Theorem VII, 4.1,
clause 1iii) suffices to establish that g <2 is a sufficient condition for
F(x,r,0,L) to be nondegenerate, meaning that Pr{F(x,r,0,L)>0}>0. In
addition, this theorem establishes that EF/(x, r, 0, L) = limy _ o EF'(x, r, A, L).
In particular, since 2 < p(u), the above obtained limy EF2(X, r, A, L) is
indeed the second moment of F(x, r, 0, L).

A Dit of additional manipulation establishes that, for all values of g
EF'(x, 7,0, L) = (r/L)"" " """*E(, g),

where 0 < E(i, q) < o if ¥<L and g < p(u), and E(u, 1) = 1.

6. MISCELLANEOUS REMARKS

Different forms of correlation. The preceding theory of distribution and
of correlation concerns cubes of side r or 1. Experimental measurements,
on the contrary, generally concern averages of € along thin cylinders of
fixed uniform cross section and varying length r. Appropriate changes
must be made to extend our results to this case.

Experimental verification of the probability distribution predicted for
F(x,r,0,L). One question must be addressed: are the above results spe-
cific to the lognormal model, or do they apply more generally? It has
been noted that in the scheme of multiplicative perturbations, the set on
which the bulk of variation of X(tf) occurs is greatly influenced by the
tails of the distribution of log X'(t,f). The central limit theorem gives no
information about those tails. More generally, different models of multi-
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plicative perturbations may seem to differ by inconsequential details, yet
yield different predictions for the distribution of Kolmogorov's €. In addi-
tion, the alternative models of intermittency belonging to the second broad
class mentioned in the introduction, namely the models of Novikov &
Stewart 1964 and M 1965¢ and 1967b{N7, N10}, lead to still different con-
centration sets, and to probability distributions that are less scattered than
the lognormal. In other words, the multiplicative model is extremely sensi-
tive to its inputs, and appropriately selected variants could account for
distributions that are more scattered or less scattered than the lognormal.
In truth, the theory in its present stage offers few predictions that the
experimentalist can verify.

Generative models of the scaling law. The interplay we have observed
between multiplicative perturbations and the lognormal and scaling dis-
tributions has incidental applications in other fields of science where very
skew probability distributions are encountered. Notable examples occur in
economics, e.g., in the study of the distribution of income. Having men-
tioned that fact, I leave its elaboration to a more appropriate occasion.

&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&&

Technical comment on the last paragraph. The last paragraph of M1972j
alludes to the following circumstances. M. & Taylor 1967 {E21} had
pointed out that the stable processes can be represented (using today's
words) as Wiener Brownian motions followed in fractal time. This, my
first paper on multifractals, instantly suggested that replacing fractal by
multifractal time would yield a new and more general mathematical
process showing promise in empirical investigations. In addition, Wiener
Brownian motion could be replaced by the fractional Brownian motion
introduced in M 1965h{H]}.

However, the "more appropriate occasion” called for in the last words
of this paragraph did not materialize until after a 25 year delay. Details
and references are given in Chapter E6 of M 1997E, the Selecta volume
devoted to Finance.

Technical comment on multifractals considered as 1/f noises. A side
result of this chapter is that the limit lognormal measure has a positive
correlation function proportional to t~ <. In loose current terminology, this
Q is referred to as a “correlation dimension.” In other words, multifractal
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measures provide an example of f ® noise. This topic is discussed in
greater detail in Section N2.2 and the annotations of next chapter.

Roots of lognormality and multiplicative effects in economics. In turbu-
lent dissipation much of the total dissipation is due to deviations that are
large, but the very largest peaks are too few to have a significant total con-
tribution. 1 was prepared to scrutinize the claims for lognormality in
Kolmogorov 1962, because I had encountered their counterparts in the
totally different context of economics. (See Part III of M 1997E.) That is, I
was sensitive to a number of very serious difficulties that were described
much later in Chapter E9 of M1997E, unambiguously titled A case against
the lognormal distribution.

Since most readers of this book are unfamiliar with statistics, it is good
to insert at this point some background concerning multiplicative pertur-
bations and lognormality. The standard reference when I was dealing
with these matters in the context of economics was Aitchison & Brown
1957. This reference states that the lognormal distribution was first con-
sidered in 1879 by a student of Francis Galton. It was rediscovered inde-
pendently many times.

A great increase in the popularity of multiplicative effects and the
lognormal distribution occurred with Gibrat 1931. Robert Gibrat (a French
engineer, manager and economist) focussed on economic inequalities such
as those in the distribution of personal income. He found that the middle
incomes are distributed lognormally, and never faced the fact that the high
income tail is definitely not lognormal. Pareto's law asserts that this tail
follows the scaling distribution. Thus, deviations from lognormality were
familiar to experimentalists in fields far removed from the study of turbu-
lence. But those tails were disregarded and in the 1930s Gibrat convinced
many statisticians and scientists that the lognormal distribution is, in some
way, a basic building block of randomness in nature. That is, many
authors feel that no specific justification is needed when randomness is
either Gaussian or lognormal, while a specific justification is required for
other distributions.

It can be revealed that I have long been dubious about Gibrat's theore-
tical argument. Contrary to Kolmogorov, Gibrat did not put lognormality
as an absolute hypothesis. Instead, very much as Obukhov 1962 was to
do for turbulence, Gibrat postulated that log (income) is the sum of many
factors, and applied the central limit theorem. No one seemed to be con-
cerned by the fact, that a) one rarely deals with sums of many factors, and
b) the central limit theorem says nothing about the tails, while — in eco-
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nomics just like for multifractals — the tails are the interesting portions of
the distribution both empirically and theoretically.

Multiplicative effects with a reflecting boundary; critique of their widely
advocated use in economics and finance. It is easy to modify Gibrat's argu-
ment so that, instead of the lognormal, it leads to the scaling distribution
called for by Pareto's law. It suffices to set up a reflecting lower
boundary. This is an ancient idea that keeps being resurrected by investi-
gators who wish to use the methods of physics in studies of the social sci-
ences. Strong reservations on those matters are described in Chapter E10
of M 1997E.

The difficult rigorous theory of the limit lognormal multifractal measures.
While I had full confidence in the validity of this paper's heuristic results,
I was eager to see a rigorous mathematical treatment argument to buttress
them. This is why I approached Jean-Pierre Kahane again, sometime in
1972 or 1973, showing him my conjectures. Years before, my heuristics of
turbulence inspired Kahane & M 1965{N11}, opening new and interesting
"natural" developments in harmonic analysis. That fascinating discipline
started with Newton's spectrum of light, and with the decomposition of
sound into its harmonics. With Wiener, it became powerfully affected by
the analysis of electrical noises. Authors like Zygmund remained aware of
old concrete problems. But others (like my uncle), preferred to “purify”
harmonic analysis by forgetting its bright and loud roots. Constant
low-key irritation against this attitude makes me welcome every opportu-
nity to demonstrate the continuing power of the “applications” to inspire
“pure” mathematics.

In addition to the random multiplicative measures described in this
paper, the examples shown to Kahane in 1972 or 1973 included the meas-
ures that were later described in M 1974f{N15} and M 1974c{N16}. The
latter have a well-defined integer base b, hence can be characterized as as
base-bound. By contrast, the limit lognormal measures described in this
paper can be characterized base-free.

As argued in Chapter N1, integer bases are not part of nature, only a
mathematical convenience. (I did not know then that physicists use it
heavily in renormalization theory; see Chapter N3.) Therefore, I have
always strongly favored the base-free measures. Unfortunately, Kahane
could not handle them rigorously, as of 1972-3. The base-bound measures,
to the contrary, were tackled immediately in Kahane & Peyriere 1976{N17}.
It is a well-known fact that when physics and mathematics tackle the same
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problem, no relation need exist between the levels of technical difficulty
that they encounter.

The difficulties Kahane encountered in 1972-3 proved serious, and
spurred him to develop delicate new mathematical tools to tackle my con-
struction. He confirmed my base-free conjectures and provided a general-
ized formal restatement of the limit lognormal multifractals, with new
results, as exemplified in Kahane 1987a,b, 1989, 1991a.



