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Robustness of R/S in measuring noncyclic
global statistical dependence (M & Wallis 1969c)

•Chapter foreword: two warnings. This heavily illustrated paper docu-
ments that the ratio R/S gives rise to an extremely useful statistical proce-
dure. However, it is necessary to repeat two warnings already spelled out
in Chapter H5.

A) When the sample variance S2(t, δ) converges rapidly to a finite popu-
lation variance, dividing R(t, δ) by S(t, δ) brings no value while intro-
ducing biases.

B) A chastening special example is provided by the PFSP processes,
abbreviation for the “partly random fractal sums of pulses.” The PFSP
show by example that the “standard” relation R/S ∼ δ

1/2 is not always a
signature of local dependence; to the contrary, it is compatible with an
important new form of global statistical dependence. Therefore, this paper
was recently obsoleted on a vital point. The exponent of R/S does not
suffice to discriminate between local and global dependence. However,
once again, R/S remains of wide utility. Editorial changes. Strong, as
applied to statistical dependence, was viewed as too vague and replaced
by global. The word bridge as applied to range was inserted where appro-
priate. The original denoted the lag by a lower case letter s and the
standard deviation by an upper case letter S. The lag is now denoted by δ
instead of s. Figure 1.

A matter of layout. To better accommodate the illustrations of this
paper, many do not follow the first reference to them, but precede it. •
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 ✦ Abstract.  This paper investigates the rescaled range R(t, δ)/S(t, δ) by
extensive computer simulation and shows it to be a very robust statistic
for testing the presence of noncyclic global statistical dependence. This
robustness extends to processes that are extraordinarily far from from
being Gaussian, for example, have huge values for skewness and/or
kurtosis (that is, third and/or fourth moments). In cases where long
dependence is present, we show how to estimate its intensity. ✦

THIS PAPER ADDRESSES THE ANALYSIS of empirical records in which
very long statistical dependence (excluding seasonals or other cycles) may
be present. Problems relative to global dependences are increasingly
recognized as being on the forefront of both theoretical and practical sta-
tistics. Until now, however, the main statistical technique to treat the very
global was spectral analysis, which performs poorly on processes that are
far from being Gaussian. Figure 2. Figure 3. Figure 4. Figure 5. •

We reinterpreted Hurst's graphs as suggesting a new technique for
data analysis, to be called “R/S analysis.” We found this technique to be
very effective in its context, and this paper examines the principal reasons
for our enthusiasm. Actual records are examined in M & Wallis
1969b{H27}, but this paper comments on Hurst's early empirical results
concerning R/S. In this ratio, R(t, S) is the bridge range defined by

R(t, δ) = max
0 ≤ u ≤ δ

{XΣ(t + u) − XΣ(t) − (u/δ) XΣ(t + δ) − XΣ(t) }
− min

0 ≤ u ≤ δ
{XΣ(t + u) − XΣ(t) − (u/δ) XΣ(t + δ) − XΣ(t) }.

As to S(t, δ), it is the sample standard deviation of X(s). That is, S2(t, δ)
Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. •

S2(t, δ) = δ− 1�
δ

u = 1

{X(t + u) − δ− 1 XΣ(t + δ) − XΣ(t) }2

= δ− 1�
δ

u = 1

X2(t + u) − δ− 1�
δ

u = 1

X(t + u)
2
.

FIGURE C25-1. Construction of the sample range R(t, δ) {P.S. 1999. This figure in
the original reproduces Figure 1 of M & Wallis 1969a{H13}. To reprint it here
would be redundant hence it was deleted, but this caption was preserved to
avoid renumbering the other figures.}
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This paper shows, that in many cases one has R(t, δ)/S(t, δ) ∼ δJ + 1/2.
When the exponent J is defined, it satisfies − 0.5 < J < 0.5 and measures
what may be called the R/S intensity of statistical dependence. This is a
precise and useful measure for at least one aspect of the more general
concept of the intensity of noncyclic global statistical dependence. The
special value J = 0 corresponds to the absence of very global dependence.
Consequently, the dependence on δ of the average of the sample values of
R(t, δ)/S(t, δ), carried over all admissible starting points t within the
sample, can be used to test whether the R/S intensity is nonvanishing and
to estimate the value of this intensity. The execution of these statistical

FIGURE C25-2. Pox diagram of log R/S versus log δ for a sample of 9000 values
of a discrete white noise G(t), that is, of independent, identically distributed
Gaussian random variables, as plotted in M & Wallis 1969a{H12}. Skewness
(0.1) and kurtosis (2.96) are as expected.

The boxes correspond to estimates of log � R/S . Their disposition is evi-
dence that the δ0.5 law in the mean applies to G(t) after a very short transient,
shorter than the transient of R(t, δ) derived by Anis & Lloyd 1953.

The crosses ( + ) correspond to sample values of R/S for log δ restricted
to the sequence 3, 4, 5, 7, 10, 20, 40, 70, 100, 200, 400, 700, 1000, 2000, 4000,
7000 and 9000. For δ < 500, 14 crosses ( + ) are plotted, corresponding to
values of t equal to 1, 100, ... , 1400. For δ > 500, t was made successively
equal to 1000, 2000, up to the smaller of 8000 or T − δ + 1.

The dispersion of R/S around δ− 0.5 (that is, the dispersion of δ− 0.5 R/S)
depends little on δ. This gives evidence that the δ0.5 law in distribution applies
to G(t) after the same short transient, the relative dispersion of δ− 0.5R/S being
small. Plotting log R(t, δ) instead of log R/S would not significantly change
this diagram, but the initial transient would lengthen.
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FIGURE C25-3. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for an independent
log normal random function, i.e., 10G(t), where G(t) is a discrete white noise of
mean 0 and variance 1. Skewness is 27.33 and kurtosis is 1050.16, both very
high, which are symptoms of the Noah Effect. Nevertheless, the disposition of
the boxes indicates that the δ

0.5 law in the mean is satisfied by 10G(t) after a
short transient, whereas the dispersion of the sample values ( + ) indicates that
the δ0.5 law in distribution is satisfied with a small relative dispersion.

A plot of 10G(t), on linear coordinates could show either the peaks or the
details of the small values, but not both. Logarithmic coordinates make the
plot legible, but amount to plotting G(t) itself.

The argument in Feller 1951 shows that the δ0.5 law holds asymptotically
for 10G(t). The study of the penultimate region of moderate values of δ is an
entirely different matter. The proof that the asymptotic results remain appli-
cable proceeds as follows. The basic fact is that in the range of moderately
large values of δ the log normal density can be approximated by an appro-
priate hyperbolic, as defined in the text. (This assertion is proved in an
unpublished paper by BBM {P.S. 1999, whose contents is incorporated in
Chapter E9 of M 1997E}.) As a result, the penultimate behavior of R/S is
essentially the same for the log normal process and an appropriate hyperbolic
process.
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FIGURE C25-4. Pox diagram of log R(t, δ) versus log δ for the sample of the
random function 10G(t) used in Figure 3. Again, skewness is 27.33 and kurtosis
is 1050.16. The diagrams of log R and log R/S (Figure 3) differ dramatically.
There is evidence that the δ0.5 law in the mean (boxes) applies to, but the tran-
sient goes up to δ ∼ 70, making it longer than the transient of log R/S for
either G(t) or 10G(t). However, the distribution of the sample values of R(t, δ)
(indicated by + ) around their average never stabilizes. Even a sample of 9000
values gives no evidence of the δ

0.5 law in distribution. The scatter of the
crosses ( + ) is so extreme that if the sample was much shorter, testing whether
the R(t, δ) function of 10G(t) obeys the δ0.5 law would be hard at best and
often hopeless. That is, the statistic R(t, δ) is much less robust than R/S.

The pox diagram of log S(t, δ) versus log δ need not be reproduced
because it is very similar to the present diagram. In other words, the two
functions log S(t, δ) and R(t, δ) are widely scattered but mesh so precisely
together that, as seen in Figure 3, little scatter remains in the difference
log R(t, δ) − log S(t, δ) = log R/S. It is an important lesson: an excellently
behaved statistic can sometimes be obtained by combining expressions that
behave badly when considered separately.

Additional insights into meshing are yielded by the behavior of R/S for
the very skew Gamma process discussed in the body of this paper. Further
insights are yielded by the legend of Figure 11.
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tasks is labeled R/S analysis, a term we coined after “spectral analysis.”
R/S intensity is measured by the exponents J or H = J + 0.5, with 0 < H < 1.

Without question, the first discipline in which the presence of noncy-
clic very global dependence has been reported is hydrology. Therefore,
we say that all fields exhibiting noncyclic very global dependence exhibit
the Joseph Effect. As described in M & Wallis 1968 {H10}, the original
Joseph Effect expresses a well-established fact that high or low levels in
rivers tend to persist, such as over the Biblical “seven fat and seven lean
years,” but more often over decades, centuries and millennia. Similar
observations have been made in meteorology, geophysics, economics,
physics, and other sciences. Using our terminology, we shall characterize
R/S intensity as one possible measure of how strongly the Joseph Effect is
present in a given class of phenomena.

Could other measures of the strength of the Joseph Effect have been
used? The answer depends on whether or not the record in question is
nearly Gaussian. If it is, one can also use the method of variance-time

FIGURE C25-5. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for a sequence of
independent, identically distributed, hyperbolic random variables with expo-
nent α = 1.1, the term “hyperbolic” being defined in the text. Skewness is
52.14 and kurtosis is 3253.10, both very high. A linear coordinate plot of this
function, would, like that of the function 10G(t) itself, be illegible. The disposi-
tion of the boxes is evidence that the δ0.5 law in the mean applies after a short
transient. The disposition of the sample values (indicated by + ) is evidence
that the δ0.5 law in distribution applies with a relative dispersion, even smaller
than in the Gaussian case.
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curves introduced by G. I. Taylor in 1921 or perhaps one of a few alterna-
tive statistical techniques.

However, many natural records are extremely non-Gaussian. This
finding was also first reported in Biblical hydrology, and we have pro-
posed to call it the Noah Effect. The original Noah Effect expresses the fact
that the levels of rivers may be extraordinarily high and that intense rain
may last over the Biblical forty days and nights. Standard books of statis-
tics include the Noah Effect under the heading of the “theory of extreme
values.” Figure 14. Figure 15. Figure 16. Figure 17. •

Because of the Noah Effect, the question raised at the beginning of this
paragraph is transformed into the question of how the R/S intensity and
other measures of the Joseph Effect are affected by the superposition of
the Joseph and the Noah Effects.

Our investigations have led us to conclude that the unique virtue of
R/S analysis lies in its being “blind” to the Noah Effect, that is, in its
being equally applicable to Gaussian records and to records with a strong

FIGURE C25-6. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for a sequence of
independent random variables with the skewness 0.00 and the very low
kurtosis 1.82. To achieve this result, a normal random variable were truncated
so severely as to make its distribution almost uniform. The validity of the δ0.5

law in the mean is no more affected by low kurtosis than it was by the high
kurtosis in Figures 3 and 5. The relative dispersion of δ− 0.5 R/S is larger
perhaps than in the Gaussian case.
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Noah Effect. When there is no Noah Effect, other available techniques
may be comparable in effectiveness to R/S analysis. However, when the
Noah Effect is strong, the best alternative techniques known to us are
simply less effective, their sampling distribution being less favorable. The
worst are worthless because they confuse the Noah and Joseph Effects
inextricably. Figure 18. Figure 19. •

The claims made in this paper, are not proved mathematically rather
demonstrated by computer simulation buttressed by some heuristic argu-
ments. Many of the figures have unusually detailed captions, which
should be considered an integral part of the exposition. Figure 20. •

Our use of the term “law” follows the custom established by the law
of large numbers, which designates the statement that some sample
average tends asymptotically towards its expectation. As is well known,
many classical theorems of probability are of the form “under such and
such hypotheses, the law of large numbers holds.” Similarly, behind every
development that follows in this paper lurks a theorem of the form “under
such and such hypothesis, the function δJ + 1/2 describes in such and such
way the behavior of R(t, δ)/S(t, δ).” The phrase “δJ + 1/2 law” will not des-
ignate a specific theorem, but rather the conclusion common to a number
of theorems. Figure 21. Figure 22. Figure 23. Figure 24. •

For stationary Gaussian processes without global dependence, division
by S(t, δ) is a useful, but not vital, detail. In this case, R/S analysis is a
small improvement over the analysis of R itself, as performed on white
Gaussian noise in Feller 1951 and Anis & Lloyd 1953. The importance of
the division of R(t, δ) by S(t, δ) increases as the process diverges from the
Gaussian and/or as one introduces dependence of an increasingly longer

FIGURE C25-7. The first 1000 values from a 9000 value sample of Type 1 approxi-
mation to fractional noise with H = 0.9 and M equal to either 10 or 100. The
whole sample of 9000 has been normalized to have zero mean and unit vari-
ance. This figure is from M & Wallis 1969a{H12}.
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extent. M 1965h{H9} and M & Van Ness 1968{H11} argue, and M &
Wallis 1969c{H25} shows that Gaussian random processes with a fractional
spectrum, in which dependence is global, are very effective for modeling
the Joseph Effect. However, it still remained to study the behavior of R/S
for non-Gaussian processes and for those with strong cyclic components,
and to compare R/S analysis with other methods of analyzing global sta-
tistical dependence (including R analysis and many other techniques that
were apparently first considered in our work as possible alternatives to
R/S analysis). We have pursued all these tasks with the help of computer
simulation, but only the main results concerning R/S are reported.

 MATHEMATICAL PRELIMINARY

If X(t) is a stationary random process, the ratio R(t, δ)/S(t, δ), considered
for fixed δ as a function of t, is another stationary random process, a
transform of the original X(t). Recall that a random process X(t) is called

FIGURE C25-8. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for 9000 values of a
Type 1 approximation to the fractional noise with H = 0.9 and M = 10, 000. This
figure is reproduced from M & Wallis 1969a. The R/S intensity of statistical
dependence is clearly equal to H = 0.9.
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stationary if identical rules generate the process X(t) and all processes of
the form X(t + δ), which are deduced from X(t) by a time shift.

To appreciate fully the manipulations concerning R/S in this paper, it
is useful to view classical covariance analysis as being based on the fact
that, when X(t) is stationary, the transformed process Y(t) = X(t)X(t + δ) is
also stationary for every δ. Since the covariance of X(t) may be written as
�  

 
X(t)X(t + δ)  = �  

 
Y(t)  , such covariance depends on δ but is not a func-

tion of t and, therefore, can be designated by C(δ). It is known that many
features of a process are fully described by the functional dependence of
C(δ) on δ.

R/S analysis is based also on the properties of a family of stationary
random functions obtained by transforming X(t), namely, the function
R(t, δ)/S(t, δ). Stationarity implies that � R(t, δ)/S(t, δ) , like C(δ) above,

FIGURE C25-9. The first 2000 values from a 9000 value sample of a hyperbolic
non-Gaussian fractional noise. To construct this sample, we preserved the
same moving average kernel already used to construct a Type 1 fractional
Gaussian noise, M & Wallis 1969a{H12}. However, the variables to be aver-
aged were hyperbolic, a concept defined in the text and a symptom of a very
strong Noah Effect. The largest values of this sample of hyperbolic fractional
noise exceeded the bounds of the graph and were truncated. Thus values that
seem to equal the maximum plottable value are in fact larger. Each large
value has strong and long-lived after effects.
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depends on δ but not t. We shall show that some important properties of
a process are described by the functional dependence of � R(t, δ)/S(t, δ)
on δ.

The body of this paper will discuss R/S testing and then R/S esti-
mation. A short additional section on cyclic effects will follow. The
remaining sections will comment briefly on R/S self-similarity and R/S
analysis for nonstationary processes.

 R/S TESTING

The behavior of R(t, δ)/S(t, δ) as δ → ∞ defines the concept of R/S
dependence, which is a form of noncyclic global statistical dependence.
Thus, the first application of R/S analysis occurs in testing for R/S
dependence in a record.

FIGURE C25-10. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for 9000 values of
the hyperbolic non-Gaussian fractional noise, plotted in part in Figure 9. The
skewness is 18.46 and the kurtosis is 602.39, both very high. The δ0.7 law
clearly holds both in the mean and the distribution, indicating that R/S anal-
ysis is blind to the extremely non-Gaussian character of the marginal distrib-
ution (strong Noah Effect) even when very global dependence (strong Joseph
Effect) has been built into the process in question.
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Preliminary. The concept of global statistical dependence is obviously
important, but it is complex and many faceted; generally accepted defi-
nitions are lacking. However, some random processes exist for which
global dependence is unquestionably present. Moreover, cyclic and non-
cyclic global dependence must be distinguished (M 1969e, Section 2.2).
Having analyzed many processes, we have observed a relation between
noncyclic global dependence and have defined the following law.

FIGURE C25-11. Alternative plot, not a pox diagram, of a greatly enlarged detail
of the variation of R(t, δ)/S(t, δ) for a hyperbolic process different from the
process used in Figure 10. The skewness is 9.09 and the kurtosis is 184.38,
both very high. The sample path of R(t, δ)/S(t, δ) as a function of δ was
plotted for several starting points. It is evident that this sample path rarely
stays at one side of the pox diagram. It rather tends to flip up and down.
This makes R/S analysis more reliable than it would have been if sample
paths did not constantly cross the trend line.
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Definition. A random process will be said to satisfy the δ0.5 law in the
mean or, to be more precise, to satisfy the R/S ∼ δ0.5 law in the mean if
the expression

lim
δ →∞

δ− 0.5�  
 
R(t, δ)/S(t, δ)  

exists (that is, is well defined) and is positive and finite. In more intuitive
terms, this means that the graph of log � R(t, δ)/S(t, δ)  versus log δ is,

FIGURE C25-12. Effect of the nonlinear transformation (10 + X)4 on an approxi-
mately fractional Gaussian noise. The skewness is 1.87 and the kurtosis is
8.75, both high. In the initial process the Joseph Effect is strong but the Noah
Effect is absent. The transformed process exhibits a moderate Noah Effect, but
the R/S intensity of dependence is unaffected by the transformation.

The practical importance of such nonlinear transformations is exemplified
by the cases of tree rings and river levels. The thickness of a tree's rings is an
increasing function of the total yearly precipitation at the site of the tree but is
probably nonlinear. The yearly maximum and minimum of a river's levels are
increasing but presumably nonlinear functions of the yearly discharge. We
studied a fourth power to illustrate such nonlinearity. This figure strongly
suggests that the R/S intensity that is estimated from tree ring thickness
(respectively, from river levels) can reasonably be expected to apply also to
yearly precipitation (respectively, to yearly flows).
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asymptotically, a straight line of slope 0.5. The δ0.5 law in the mean fails
to hold in two cases:

(1) when δ− 0.5� R(t, δ)/S(t, δ)  oscillates with no limit as δ → ∞,

(2) when this quantity tends to either zero or infinity.

In either case, the graph of log � R(t, δ)/S(t, δ)  versus log δ does not
possess a straight asymptote of slope 0.5.

{P.S. 1999. Generality and mathematical exactitude would suggest that
the existence of a limit be replaced by the two less demanding conditions
lim sup < ∞ and lim inf > 0. The early treatment in this chapter forsook
this higher level of generality as being premature.}

FIGURE C25-13. Effect of the extremely nonlinear transformation eX, when applied
to a fractional Gaussian noise. The skewness is 39.32 and the kurtosis is
2277.42, both very high. Over the span of values of δ that have been consid-
ered, the slope of the trend line of this diagram is much smaller than H. This
shows that nonlinear transformations, if sufficiently extreme, may not preserve
the R/S intensity of the original process. The resulting process need not even
have a well-defined R/S density. {P.S. 1999. The effect of non-linear transfor-
mations on diverse “1/f noises” are a topic of very great interest briefly dis-
cussed in M 1999N, Chapter N4.}
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Basic result. We have found that the δ0.5 law in the mean does hold for
every process for which global dependence is unquestionably absent and
does not hold for many processes exhibiting unquestionable noncyclic
global statistical dependence.

Examples. The stationary process of independent reduced Gaussian vari-
ables is unquestionably the simplest process with non existent, hence local,
dependence. The term “reduced” means that the expectation has vanished
and the variance is unity. For this process, the law of large numbers
shows that limδ →∞ S(t, δ) = 1. In addition, Feller 1951 proved the existence
of limδ →∞ δ− 0.5 �  

 
R(t, δ)  =

√
π/2 , a number that is approximately 1.25.

Thus C = limδ →∞ δ
− 0.5 � R(t, δ)/S(t, δ) is also about 1.25 for independent

Gaussian processes that have not been reduced. The fact that this limit is
both positive and finite establishes that these processes satisfy the δ0.5 law

FIGURE C25-14. The first 1000 values from a 9000 value sample of a “locally
Gaussian random process”. This notion was introduced in M 1969a to resolve
certain paradoxes encountered in attempts to model economic time series by
strictly Gaussian processes. Because of seemingly contradictory properties,
locally Gaussian processes are an especially tough challenge to data analysis.

This figure concerns the process ΩN(t) = N− 1/2∑N
m = 1Wm(t), where each Wm(t)

is a “coin” process constructed by the following three steps. The first step
constructs a stationary renewal process, that is, a stationary sequence of points
Tk such that the intervals Uk = Tk + 1 − Tk are independent random variables sat-
isfying Pr{Uk > u} = u− β. A second step selects for Wm(Tk) a sequence of inde-
pendent Gaussian random variables of zero mean and unit variance. A third
step identifies the interval from Tk to Tk + 1 in which the instant t is located, and
sets Wm(t) equal to Wm(Tk). Thus, each Wm(t) is a step function representing a
trend that changes at the instants Tk. Over any prescribed sample size from
t = 1 to t + T, the random function ΩM(t) tends to a fractional Gaussian noise as
N → ∞. When N is finite, however, Ωm(t) is merely locally Gaussian. In this
figure, β = 1.4 and N = 10. {P.S. 1999. Coin processes, called “core processes” in
the original, are investigated in M 1967i{N9}.}
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of the mean; an experimental confirmation is shown in Figure 2. Figures
2, 3, 5 and 6 demonstrate that the δ0.5 law also applies to processes of
independent values having a variety of other marginal distributions: trun-
cated Gaussian, log normal and hyperbolic, respectively.

Here, the random variable X is called “hyperbolic” if, for large values
of x, it satisfies the two relations Pr {X > x} ∼ (x/σ′)− α and
Pr{X < − x} ∼ (x/σ′′)− α, where α is a positive constant. If, moreover, either
σ′ or σ′′ vanishes, X is called “unilaterally hyperbolic” or “Paretian.” If
both σ′ and σ′′ are positive, X is called “bilaterally hyperbolic.” (The pos-
sibility that σ′ = σ′′ = 0 must be excluded.) For a discussion of the special
role of such random variables, see for example, M 1963e{E3}.

The simulations reported in this paper concern the case where σ′′ = 0
and σ′ = 1, and the case where σ′ = 2− 1/ασ′′. We began with a sequence
F(t) of independent random variables, uniformly distributed between 0
and 1. Next, a bilateral hyperbolic function Z(t) was constructed using the
formulas:

If 0 < F(t) < 1/2, Z(t) = 2F(t)
− 1/α

;

FIGURE C25-15. Pox diagram of R(t, δ)/S(t, δ) for 9000 values of a locally
Gaussian noise, including and continuing the sample of Figure 14.
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If 1/2 < F(t) < 1, Z(t) = 2 − 2F(t)
− 1/α

.

To simplify subsequent calculations, Z(t) was rounded to its integer part.
The unilateral hyperbolic function was defined as Z(t) . In Figures 2 to 6,
the expression δ− 0.5� R(t, δ)/S(t, δ)  attains its limit value very rapidly,
that is, after a brief initial transient. Note, however, that the precise value
of limδ →∞ δ− 0.5 �  

 
R(t, δ)/S(t, δ)  greatly depends on the process; this will

be exemplified later in the paper.

It should be noted that the values of R(t, δ)/S(t, δ) for small log δ, as
plotted in the figures of this paper, have been computed incorrectly. They
must be disregarded. However, the paper's conclusions remain unaf-
fected. The nature of the error will be explained in Taqqu 1970. {P.S.

FIGURE C25-16. The first 2000 values from a 9000 value sample of a different
locally Gaussian random process. The constructions proceeded as for the
function plotted in Figure 14, except that we selected for Wm(Tk) a sequence of
independent binomial random variables of zero mean and unit variance equal
to + 1 or − 1 with probabilities 0.5. In this figure, N = 3.
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1999. In this reprint, the bottoms of the figures, which were incorrect,
were not reproduced.}

When the values of the process X(t) are statistically dependent, the
dependence is limited to the local. The transient is much longer, but the
δ0.5 law in the mean holds asymptotically. We shall return later to a dis-
cussion of the practical meaning of such asymptotic results.

On the other hand, Figures 7 to 17 and, additionally, many figures in
M & Wallis 1969a {H13} show that the δ

0.5 law in the mean fails for a
variety of processes for which the dependence between X(t) and X(t + T)
decreases extremely slowly to zero as T → ∞. A more detailed discussion
of these figures is best postponed to a later section devoted to R/S esti-
mation.

How to account for Hurst's empirical δH law. In empirical records, the
values of R/S were found to cluster closely along a function of the form
δJ + 1/2 with H > 0.5. The finding that H > 0.5 was made originally by Hurst
1951, although Hurst's estimates of H involved a far-reaching conceptual

FIGURE C25-17. Pox diagram of R(t, δ)/S(t, δ) for 9000 values of a locally
Gaussian noise, including and continuing the sample of Figure 16.
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error discussed in M & Wallis 1969b{H27}. Feller 1951 proved that the
empirical δJ + 1/2 law is incompatible with the idea that the records in ques-
tion were generated by an independent Gaussian process. Then several
authors, including Moran 1964, 1968, argued that the empirical δJ + 1/2 law
could be accounted for by postulating that the records were generated by

FIGURE C25-18. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for a pure sine
wave with L = 100. Values of the form δ = kL correspond to subharmonics of
the sine wave. For them, R(t, δ)/S(t, δ) is independent of t and k, as can be
seen from the theory. Big lobes are, however, visible for other values of δ. If
R(t, δ)/S(t, δ) had been computed for δ in a grid that eventually merges with
the grid of the subharmonics of the pure sine, R(t, δ)/S(t, δ) would rapidly
attain its asymptotic limit. However, if the grid is selected independently of
the value of L, then R/S is more likely to fall within the lobes. The result is a
pox diagram of log R(t, δ)/S(t, δ)  versus log δ having a positively sloped
trend line. Thus, a small sample of a pure sine wave could be declared by
R/S to have a small positive value of H. This conclusion would be incorrect.

This behavior of R/S is reflected in the remaining R/S pox diagrams and
teaches important lessons. When cyclic effects are suspected but it is either
undesirable or impossible to process the data to eliminate the cycles, one
should compute R(t, δ)/S(t, δ) or its average for as many values of δ as one
can manage. M & Wallis 1969a{H12} show that, contrary to spectral analysis,
one need not smooth out the behavior of R(t, δ)/S(t, δ) by averaging its values
over neighboring values of δ. We now add the observation that such
smoothing would also mix the cyclic effects with noncyclic global dependence
to produce an apparent value of H devoid of significance.
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a random process with independent values and a very skew marginal dis-
tribution. In our vocabulary, these authors postulated that the empirical
δJ + 1/2 law relates to the Noah Effect. The results in the present paper
show that this Noah Effect explanation is insufficient. Earlier, M 1965h, M
& Van Ness 1968{H11} and M & Wallis 1969a{H12}, explained the δJ + 1/2

as being one aspect of the Joseph Effect, hence made the Noah Effect
explanation unnecessary.

Irrelevance of a specific example of Moran's argument. Moran 1968 (p.
495) attempted to illustrate his proposed account of Hurst's empirical law
by considering Gamma distributed random variables of density

 
 
Γ(γ)  

− 1
xγ − 1e− x, where the parameter γ is very small. Moran's illustration

is fallacious, as we shall now demonstrate.

The key fact is that a very skew Gamma process X(t) exhibits a Noah
Effect so extreme in its intensity that unless t is made extremely large, of

FIGURE C25-19. The pox diagram of log R(t, δ)/S(t, δ) versus log δ for the sum of
a pure sine wave and a white noise of comparable amplitudes. The behavior
of this function is a clear hybrid of the behaviors of each of the functions
plotted in Figures 2 and 18. If the sine amplitude was stronger, the asymptote
of slope 0.5, characteristic of the noise component, would fail to prevail for the
lags plotted on this figure. If the sine amplitude was smaller, the wiggles and
lobes characteristic of the pure sine component would be less viable.
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the order of 1/γ, there is a very high probability that XΣ(t) = ∑t
u = 1X(u) is

almost indistinguishable from max0 ≤ u<tX(u). As a result,

R(t, δ) ∼ max0 ≤ u ≤ δX(t + u).

We can then write,

�
δ

u = 1

X2(t + u) ∼ max0 ≤ u ≤ δX(t + u)
2
,

and

S2(t, δ) = δ− 1 max0 ≤ u ≤ δ X(t + u)
2 − δ− 1 max0 ≤ u< δ X(t + u)

2

= δ− 1(1 − δ− 1) max0 ≤ u ≤ δ X(t + u)
2
.

Finally, we find that R(t, δ)/S(t, δ) ∼ δ0.5(1 − δ− 1)− 0.5, independently of t.
After an initial transient until δ− 1 becomes �1, say up to δ = 10, one has
R(t, δ)/S(t, δ) = δ0.5 with negligibly small statistical scatter. This argument
ceases to apply when δ exceeds 1/γ, but it suffices to show that Moran's
claims were unfounded.

Incidentally, we do not question Moran's mathematics. His error lies
in believing that Hurst's empirical findings applied to the bridge range
R(t, δ) and not to the ratio R/S. The behavior of R(t, δ) will be examined
below in a subsection devoted to nonrobust variants of R/S.

FIGURE C25-20. The first 1000 values from a 9000 value sample of the sums of a
fractional noise and a moderately strong sine wave.
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Formal definition of R/S independence. The examples we considered
introduce a distinction between two kinds of random process: those for
which limδ →∞ δ− 0.5�  

 
R(t, δ)/S(t, δ)  exists and is positive and finite, and

those for which the limit is either nonexistent, or 0, or infinite. This alter-
native has been stated purposefully in terms such that every random
process falls on one or the other side and, therefore, can be used as a basis
of the following formal definition of dependence. Every process with the
quality that limδ →∞ δ− 0.5� R(t, δ)/S(t, δ)  is finite and positive, will be
said to be R/S independent. All other processes are R/S dependent.

FIGURE C25-21. Pox diagram of log R(t, δ)/S(t, δ) versus log δ for a sample of
9000 values of the sum of a fractional noise and a sine wave. For high values
of H, such as H = 0.9, the presence of a comparatively strong sine component
leaves the δH law in the mean valid. Thus, it does not greatly affect R/S esti-
mation. When the value of H is smaller, the effect of the cycle is more visible.
Note also that the scatter of sample points around their trend line narrows
near δ = 200. This means that the convergence towards the δJ + 1/2 law in dis-
tribution is postponed to higher values of δ when a sine wave is added. This
tightening of the graph is even clearer on Figures 23 and 24 and will be dis-
cussed in the legend of Figure 24.
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Definition of R/S testing and the relativity of the concepts of local and
global. The above definition suggests that, having computed the values of
R(t, δ)/S(t, δ) corresponding to some available finite sample of X(t)'s, one
could try to determine the category to which the process that generated
X(t) is likely to belong to, from the sample behavior of R/S. However, this
proposed statistical technique immediately raises a major conceptual diffi-
culty: the concept of R/S dependence was defined by the asymptotic
behavior of R(t, δ)/S(t, δ). It remains to interpret R/S for finite samples of
ordinary size.  

Given a sample of size T such that the values of R(t, δ)/S(t, δ) are
known from δ = 1 to δ = T, the ideal case occurs when the variations of the
sample average of δ− 0.5 R(t, δ)/S(t, δ) become negligible for δ�T. Two
conclusions can be drawn: (1) the value near the point where this sample
average stabilizes can be taken as reasonable estimate of the limit limδ →∞
δ− 0.5 �  

 
R(t, δ)/S(t, δ)  and (2) one can say not only that there is no global

R/S dependence in X(t) but also that the R/S dependence of X(t) has a
span much shorter than T.

However, the observed average of δ− 0.5R(t, δ)/S(t, δ) may continue to
vary greatly while δ approaches its upper bound T. This behavior has two
possible causes (1) X(t) is R/S independent, with the transient zone of
R(t, δ)/S(t, δ) longer than T, or (2) X(t) is R/S dependent. From a sample
of finite duration T, one cannot conceivably distinguish between these two
possibilities.

FIGURE C25-22. The first 1000 values from a 9000 value sample of the sum of a
fractional noise and a sine wave of very large relative amplitude, comparable
to that of meteorological records.
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In summary, given a sample of duration T, R/S testing consists of
deciding which is more likely between the following possibilities: (1) the
span of R/S dependence is much less than T or (2) the span of R/S
dependence is either in the order of magnitude of T or greater, or even
infinite.

Relation between R/S dependence and other forms of global dependence.
The idea of forming the ratio R/S first arose in hydrology, R(t, δ) being
related to Rippl's ideal minimum capacity of reservoirs for global storage
(Hurst 1951). The distinction between R/S dependence and R/S inde-
pendence is therefore likely, in one field at least, to be practically useful.
Moreover, the examples we studied show that the concept of R/S inde-
pendence quantifies some aspects of the intuitive idea of global statistical
independence. We may add that it is unlikely that any single definition of
global independence will ever adequately address all aspects of this
concept, and that alternative definitions will always exist. For instance,

FIGURE C25-23. Pox diagram of log R(t, δ)/S(t, δ) for a sample of 9000 values
that includes and continues the function in Figure 22. The effect of the sine
wave is very strong. The critical bend starting at δ = 100 is shown in detail on
Figure 24.
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random processes may be R/S dependent but global independent
according to other criteria (see M 1969e), but this is not an appropriate
place to discuss this feature. {P.S. 1999. Time vindicated the caution
exerted in the late 1960s when drafting the preceding comments. In par-
ticular, many FSP processes are R/S independent yet globally dependent as
seen in Chapter H5.}

Also, some processes are R/S dependent but independent according to
other criteria. The principal example of this last possibility is provided by
processes with both a sinusoidal cyclic component and a noise component.

FIGURE C25-24. On this greatly enlarged detail, the single bend observed in
Figure 23 splits into a richer structure of narrowing at the values of δ corre-
sponding to the subharmonics of the sine wave, with broad lobes between
these narrow points. Both features reflect the properties Figure 18 found for
the pure sine wave. As δ → ∞, the lobes become negligible and the contrib-
ution of the noise again becomes determinant. However, unless the total
available sample size is much larger than the wavelength of the pure sine, the
addition of a strong sine wave makes the apparent R/S intensity decrease
greatly.
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The sine function creates global statistical dependence, but it will be
shown that such processes are R/S independent.

Effect of strong cyclic components on R/S analysis. The best known type
of global dependence is not R/S dependence but is exemplified by the
pure sine wave A sin(2πt/L + φ). The wavelength L is prescribed, and the
amplitude A and the phase φ are both chosen randomly in advance
according to any specified probability distribution. For this process, the
covariance between X(t) and X(t + δ) is itself a sine function that oscillates
up and down without limit. Now consider the ratio R/S of the pure sine
wave. Clearly, limδ →∞ R(t, δ) = AL/π and limδ →∞ S(t, δ) = A/2 so that
(see Figure 18) limδ →∞  R(t, δ)/S(t, δ) = 2 L/π = .636 L. Division by δ0.5

yields limδ →∞ δ− 0.5 �  
 
R(t, δ)/S(t, δ)  = 0, leading to the fact that pure

sine waves are R/S dependent. In other words, R/S dependence is not in
conflict with pure sine dependence. When a white Gaussian noise of zero
mean and unit variance G(t) is added to the sine wave to obtain

X(t) = A sin(2πt/L + φ) + G(t),

the situation changes radically. One can check that XΣ(t) satisfies the
double inequality

GΣ(t) − AL/2π ≤ XΣ(t) ≤ GΣ(t) + AL/2π.

Since for t → ∞, AL/2π becomes negligible in relative value, the ranges of
the two processes X(t) and G(t) are asymptotically identical and
limδ →∞ δ− 0.5 �  

 
R(t, δ)  = 1.25. On the other hand, �S2(t, δ) = 1 + A/2.

Consequently, limδ →∞ δ− 0.5�  
 
R(t, δ)/S(t, δ)  = 1.25(1 + A/2)− 0.5 for the

process X(t). That is, in the case of a sine wave plus a white noise of arbi-
trary amplitude, the δ0.5 law in the mean is valid and there is no R/S
dependence.

However, the values of limδ →∞ δ− 0.5 � R(t, δ)/S(t, δ) , and the speed
with which this limit is attained, are highly dependent on A. Two things
happen as A increases: (1) the limit of δ− 0.5�(R/S) tends to zero, and (2)
δ− 0.5�(R/S) takes even longer to reach its limit. For example, in the case
where L = 100 we found that the point where the asymptotic δ0.5 behavior
prevails is beyond 9000 when A = 3, but is about 200 when A = 0.5.

Sharp cyclic components rarely occur in natural records. One is more
likely to find mixtures of waves that have slightly different lengths but
differ greatly in high subharmonics. As a result, a number of cycles cov-
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ering a whole band of frequencies will perturb R/S analysis less than a
single sharp sine of comparable total energy.

Statistical robustness of the mean variance δ0.5 law. The relative devi-
ation of R/S is defined as

√
Var  

 
R(t, δ)/S(t, δ)  

�  
 
R(t, δ)/S(t, δ)  

.

  For the stationary process of independent Gaussian variables this rela-
tive deviation tends to limδ →∞

√
Var R(t, δ) /� R(t, δ)  as δ → ∞. Feller

1951 showed this limit to be 
√
π /3 − 1 ∼ 0.217, which we consider small.

For other processes we studied (independently of whether R/S depend-
ence is strong or absent), we again found the relative deviation of R/S to
be small. More precisely, the relative deviation is smaller for R/S than for
any alternative expression we thought might be used to study global
dependence.

The term “mean variance δ0.5 law” conveniently combines two state-
ments: (1) the limit limδ →∞ δ− 0.5� R(t, δ)/S(t, δ)  is nontrivial and (2) the
limit of the relative deviation 

√
Var R(t, δ)/S(t, δ) /� R(t, δ)/S(t, δ)  is

small.

The basis of the R/S tests for noncyclic global independence can be
rephrased in terms of the statistical concept of robustness. The extent to
which Feller's results hold if X(t) is not independent Gaussian is the extent
to which statistics based upon R(t, δ)/S(t, δ) are robust. Before we tackle
this issue, it may be beneficial to remind the reader of the definitions of
the classical terms, “statistics” and “robust.”

Definition of the term “statistic.” Given either T values of a random
process X(t), or T recorded observations thought to have been generated
by a random process, the term “statistic” is an awkward but entrenched
synonym of the one-dimensional or multidimensional functions of the T
arguments X(t). The best known one-dimensional statistics are as follows:
the sample moment for a given k, namely, T− 1∑T

t = 1X
k(t); the sample

covariance for given lag δ, namely, either T− 1 ∑T − 1
t = 1 X(t) X(t + δ) or

(T − δ)− 1∑T − 1
t = 1 X(t) X(t + δ); the sample lag correlation between X(t) and

X(t + δ) for a given lag δ; and the Fourier coefficient of X(t) at a given
wave number k, for example,
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1
T �

T

i = 1

X(t) sin (2πkt/T).

Corresponding multidimensional statistics are the sets of all sample
moments, correlations, or Fourier coefficients. The present work is con-
cerned with statistics involving the rescaled range exemplified by

1
(T − δ) �

T − δ

t = 1

R(t, δ)/S(t, δ).

Definition of the term “statistical robustness.” A statistic is called robust
if its distribution, or the conclusions to which it leads, are not drastically
dependent upon specific assumptions about the process generating X(t).
The usual assumption against which robustness is assessed is that the
process is Gaussian. But even then, robustness is not a uniquely defined
concept, since one can consider many different aspects for every statistic
and each of these aspects can be studied with respect to many different
kinds of deviation from the independent Gaussian.

Nonrobustness of the precise value of the limit limδ →∞ δ− 0.5

�  
 
R(t, δ)/S(t, δ)  . As we already noted, Feller 1951 has proved that, for

the process of independent Gaussian random variables, the value of this
limit is approximately equal to 1.25. The same limit is also attained for
every process that has a finite variance. However, when the variance is
infinite, the limit is different and typically between 1.25 and 1. In addi-
tion, the value of this limit can be modified arbitrarily by introducing local
statistical dependence so that the property limδ →∞ δ− 0.5

�  
 
R(t, δ)/S(t, δ)  = 1.25 is not robust with respect to local deviations of

X(t) from the independent Gaussian process.

For example, consider the white Gaussian noise, which is a stationary
process such that its values for even instants of time t = 2k are inde-
pendent Gaussian G(k), and such that its value at odd instants of time
equals its value at the following even instant. When the value of δ is
large, the range R0(t, δ) of the white Gaussian noise is shown to nearly
equal 

√
2 R(t, δ), where R(t, δ) is the range of the independent Gaussian

white noise G(k), while the standard deviation S0(t, δ) nearly equals the
standard deviation S(t, δ) of G(k). Thus,

lim
δ →∞

�  
 
δ− 0.5R0(t, δ)/S0(t, δ)  =

√
2 lim

δ →∞
�  

 
δ− 0.5R(t, δ)/S(t, δ)  = 1.25

√
2 .
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If the very local dependence due to stuttering is made stronger, the limit
of �  

 
δ− 0.5R(t, δ)/S(t, δ)  is further modified.

Extreme robustness of the mean variance δ0.5 law. As we have stated pre-
viously, for every process of independent values we have examined,
including extremely skew log normal processes (see Figure 3) and proc-
esses with an infinite population variance (see Figure 5), � R/S  is
asymptotically proportional to δ0.5 and the reduced variable δ− 0.5 R/S has
a small variance. If anything, the variance is smaller in cases when X(t) is
a very long-tailed random variable than in cases when X(t) is Gaussian.
We can now rephrase this result by saying that the mean variance δ0.5 law
is extremely robust with respect to changes in the marginal distribution of
X(t).

Nonrobustness of the statistic R(t, δ) not divided by S(t, δ). None of the
many variants of R/S that we studied is as robust as R(t, δ)/S(t, δ). While
some alternatives to the R/S ratio retain the property that their expected
value is asymptotically proportional to δ0.5, none has as small a variance
as R/S. In the present paper we shall be content to demonstrate the
nonrobustness of R(t, δ) by examining two classes of non-Gaussian proc-
esses.

First class of examples. Consider the random process of independent
hyperbolically distributed values for which R/S is studied in Figure 5. In
this case, the marginal distribution is extremely skew and/or long-tailed.
M 1963b and Moran 1964 show that �R(t, δ) ∼ δ1/α for this process, with α
between 1 and 2 so that 1/α is between 0.5 and 1. On the other hand, the
asymptotic population variance of δ− 1/αR(t, δ) is infinite, which implies
that sample values of δ− 1/αR(t, δ) are extremely erratically behaved,
making it easy for sampling fluctuation to overwhelm and to hide the
functional dependence of R(t, δ) on δ. Consequently, one may conjecture
that, given the highly non-Gaussian characters of some of his records,
Hurst's rough graphic analysis had been carried on R(t, δ) itself. Hurst
might well have concluded that his records follow no simple law of
general validity, and the topic might have been dropped. In other words,
since, on one hand, sophisticated analysis is needed to verify how R(t, δ)
depends on δ, and on the other hand, sophisticated analysis is not ordi-
narily attempted unless there is evidence that it is worthwhile to do so.

Had Hurst plotted R instead of R/S, it is possible that ways to handle
global hydrologic effects would have been discovered much later.

Second class of examples. Now consider the behavior of R(t, δ) for the
process of independent log normal values (see Figure 4). The corre-
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sponding behavior of R/S was reported in Figure 3. This example shows
that random processes exist for which �R ∼ δ0.5 holds asymptotically, but
the asymptotic behavior prevails only for extraordinarily large δ. In the
long transient that precedes this asymptote, the dispersion of R around �R
may be enormous.

Similar remarks apply to Gamma distributed random processes, which
(as we have noted already) were injected into this topic by Moran. For
small values of δ, the range of such a process was found by Moran to
satisfy �R ∼ δ, but it is clear that the scatter of sample values around this
expectation is enormous. Therefore, the relation �R ∼ δ has no practical
relevance.

Robustness of the R/S ∼ δ0.5 law with respect to local statistical depend-
ence. Now consider random processes in which statistical dependence is
present but intuitively felt to have a short range or, more accurately, to
have a finite range. Examples are Markov random processes, finite
autoregressive processes and processes of finite moving averages of inde-
pendent random variables. In such cases, the value of limδ →∞ δ− 0.5

�  
 
R(t, δ)/S(t, δ)  is always positive and finite, greatly though it is affected

by the details of the process. To eliminate this influence, one may con-
sider the reduced random variable R(t, δ)/S(t, δ) /� R(t, δ)/S(t, δ) . It
can be shown that the limit for δ → ∞ is unaffected by the details of local
dependence.  Thus, if an asymptotic viewpoint were legitimate, one could
describe the R/S ∼ δ0.5 law as robust with respect to the introduction of
local statistical dependence.

From a finite nonasymptotic viewpoint, however, things are always
more complex, as we stressed earlier in this paper and in our preceding
works.

 R/S ESTIMATION

Abstract of this section. The behavior of R(t, δ)/S(t, δ) as δ → ∞ can serve
to define the concept of the R/S intensity of dependence, which is a form
of the intensity of noncyclic global statistical dependence. For this
purpose, one must divide the class of processes with global dependence
more finely so that each subclass contains processes for which noncyclic,
global dependence can be said to have the same intensity. With this finer
subdivision we shall be able to proceed from the previously discussed
problem of testing from global dependence to the new problem of pre-
cisely estimating the R/S intensity of a record.
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Definitions. We shall say that a random process satisfies the R/S ∼ δJ + 1/2

law in the mean if limδ →∞ δ− H� R(t, δ)/S(t, δ)  is defined and is positive
and finite. We shall see that such processes exist for every H between 0
and 1. Following a common mathematical terminology, it is useful to say
that all processes satisfying the R/S ∼ δJ + 1/2 law in the mean with iden-
tical H form a class of equivalence. The special class H = 0.5 corresponds
to the absence of R/S dependence. If a process falls within the class
H ≠ 0.5, then H − 0.5 may be said to measure the R/S intensity of interde-
pendence. Positive intensity expresses persistence. Negative intensity
expresses a tendency of the values of X(t) to compensate for each other to
prevent XΣ(t) from blowing up too fast. Perfect compensation occurs in
the pure sine wave, for which we may say that H = 0.

  Remark. We could also exhibit processes that do not satisfy in the mean
any δJ + 1/2 law with 0 < H < 1. Such processes, when taken as a body, con-
stitute an additional class of equivalence, namely, a remainder class of
processes to which no R/S intensity can be ascribed. But as of today,
processes in this remainder class lack practical application.

Transformations with respect to which the R/S intensity of dependence is
invariant. We must first return briefly to the robustness of the δ

0.5 law,
because it will be useful to restate the robustness in an alternative fashion.
Observe that every random process of independent non-Gaussian values
X(t) can be written as a nonlinear function of a process of independent
Gaussian values G(t). For example, if X(t) is log normal, one simply writes
X(t) = c exp bG(t) , where c and b are arbitrary constants. Thus, the
robustness of the mean variance δ− 0.5 law discussed in the section on R/S
testing can be rephrased by saying that this law is invariant with respect
to a nonlinear transformation of the white Gaussian noise. When dis-
cussing R/S testing, we also saw that the class of processes which do not
exhibit R/S dependence is left invariant by transformations that introduce
short-term dependence.  We shall now show that robustness under trans-
formation is less when global dependence is either positive or negative
than when it is zero.

To describe the transformations considered, take as a point of depar-
ture the fractional Gaussian noises of exponent H (M & Van Ness
1968{H11}) and two approximations to fractional Gaussian noises (M &
Wallis 1969a{H12}.) Our Type 2 approximation is the grosser and less
important of the two, but it is easier to define. It is given by the two-
parameter moving average:
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F2(t 
 
H, M) = (H − 0.5) �

t − 1

u = t − M

(t − u)H − 1.5G(u) + QHG(t)

= (H − 0.5)�
M

u = 1

uH − 1.5G(t − u) + QHG(t).

In this definition G(u) is a sequence of independent Gaussian random vari-
ables of zero mean and unit variance. The constant QH depends on H as
follows:

QH = 0 if 0.5 < H < 1, and

QH = (0.5 − H)�
∞

u = 1

uH − 1.5 if 0 < H < 0.5.

The final parameter M, called the memory of the process, is some very
large quantity. Early on, M 1965h, set M = ∞, but M & Wallis 1969a
varied M from 1 to 20,000.

The definitions of discrete fractional Gaussian noise, as well as of Type
1 approximations, are more cumbersome. It suffices to recall that every
variant considered in M & Wallis 1969a{H12} is a linear function of inde-
pendent Gaussian variables G(u). According to the definition in M 1965h,
fractional Gaussian noises are moving averages of the form ∫K(t − u)G(u),
wherein the kernel K(u) behaves for large values of u proportionately to
uH − 1.5. The appearance of a typical fractional Gaussian noise is illustrated
in Figure 7, and the corresponding R/S graph plotted in Figure 8.

The words linear and Gaussian are crucial in answering the following
question: after various transformations have been applied to a fractional
Gaussian noise of exponent H, does the R/S ∼ δJ + 1/2 law continue to
hold? We consider in detail two kinds of transformations:

(A) Replacement of the input variables G(u) by extremely non-
Gaussian variables, that is, nonlinear transformations of the input variables
before they are combined linearly. We found that such transformations
leave our classes of equivalence invariant (see Figures 9, 10 and 11).

(B) Nonlinear transformations of intermediate variables obtained as
linear forms of the input variables. We found that nonlinearity must be
moderate if a class of equivalence is to stay invariant. For example, pick a
value of H = J + 0.5 and a function F2(t H, ∞), whose R/S intensity of
dependence is H. In the range of values of x between − 8 and 8, the non-
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linearity of the function (10 + X)4 is sufficiently moderate for the R/S
intensity of 10 + F2(t H, ∞)

4
 to remain equal to H. But the function

exp(X) is so nonlinear that the R/S intensity of exp F2(t H, ∞)  is below
H (see Figures 12 and 13).

It will be interesting to combine the transformations (A) and (B) and to
consider other transformations.

ADDITIONAL COMMENTS ON CYCLIC COMPONENTS

The effect of one cyclic component has already been studied under the
assumptions that H = 0.5 and δ is large. If more than one pure sine wave
is added and H ≠ 0.5, the asymptotic R/S intensity of dependence is
unchanged, as might have been expected, but the nonasymptotic effects
are not so obvious. The following unsystematic comments serve as an
elaboration of earlier discussions.

First, examine in detail Figure 18, the graph of the R(t, δ)/S(t, δ) func-
tion for the pure sine wave A sin(2πt/L + φ). The subharmonics of L, that
is, the values of δ multiples of L, are evident in two ways. First, when δ
is a subharmonic of L, the sample values of R(t, δ)/S(t, δ) have no scatter,
that is, are independent of t. Second, between those subharmonics, one
finds lobes of decreasing amplitude with the greatest scatter halfway
between subharmonics.

Next, consider the function

X(t) = A sin(2πt/L + φ) + G(t)

where the G(t)'s are independent Gaussian variables with zero mean and
unit variance and where L is large in comparison with the duration of the
transient range before the asymptotic R/S ∼ δ0.5 (see Figure 19). When the
lag δ lies between the duration of the transient and T, the sine wave
A sin(2πt/L) is nearly a constant. Adding this constant to G(t) leaves
R(t, δ) and S(t, δ) practically unaffected and leaves δ− 0.5� R(t, δ)/S(t, δ)
near Feller's asymptotic value of 1.25. Eventually, δ− 0.5� R(t, δ)/S(t, δ)
attains its asymptotic value, derived earlier in this paper, of 1.25
 
 
1 + A/2  

− 0.5
. But the transition from the initial value 1.25 to the final

value 1.25 1 + A/2
− 0.5

 is not smooth and progressive; it proceeds in a
series of wiggles that reflect the lobes of the function R(t, δ)/S(t, δ) of a
pure sine wave. For δ near L and also (but less markedly) for δ multiples
of L, the scatter of R(t, δ)/S(t, δ) is greatly reduced.
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Figures 20 to 24 refer to sums of a fractional Gaussian noise and
various pure sines. The captions are self-explanatory.

MATHEMATICAL DIGRESSION ON ASYMPTOTIC SELF-AFFINITY

In pursuing the study of R/S analysis, it becomes important to study the
distribution of the ratio R(t, δ)/S(t, δ). In the present paper, we have
studied only its mean and variance. Simplest and most interesting are the
processes where, as δ → ∞, the expression δ− HR/S tends towards a non-
trivial limit, that is, toward a random variable that does not reduce to
either zero or infinity. Consider, for example, the independent Gaussian
process. An argument due to Feller 1951 can be extended readily to show
that, in the case of an independent Gaussian process, δ− 0.5R/S has a non-
trivial limit. This process and all others for which δ− J − 1/2R/S has a non-
trivial limit can be said to satisfy the R/S ∼ δJ + 1/2 law in distribution, or
to be asymptotically R/S self-affine. This last concept generalizes ordinary
self-affinity, which is discussed in M 1967s.

MATHEMATICAL DIGRESSION ON THE SCOPE OF R/S ANALYSIS

As we noted when discussing the classical covariance analysis,
�  

 
X(t)X(t + δ)  is independent of t, if X(t) is a stationary random process.

But the converse is not true; the property that � X(t)X(t + δ)  is inde-
pendent of t does not require that X(t) be stationary. When
�  

 
X(t)X(t + δ)  is independent of t, the nonstationarity of X(t) will remain

unnoticed as long as the analysis does not proceed beyond the covariance.
Such processes have been called covariance-stationary (or weakly sta-
tionary or second-order stationary) processes.

Similarly, nonstationary random processes may exist for which
�  

 
R(t, δ)/S(t, δ)  is independent of t. When such processes are R/S ana-

lyzed but not studied from other viewpoints, they will appear stationary;
therefore, it might be useful to call them R/S stationary in the mean.
Moreover, any such process may satisfy the R/S ∼ δ

H law in the mean, the
strict stationarity of X(t) being unnecessary. If not only the expectation
but the whole distribution of the random variable R(t, δ)/S(t, δ) is inde-
pendent of t, X(t) deserves to be called strictly R/S stationary. Such proc-
esses may satisfy the R/S ∼ δJ + 1/2 law in distribution, strict stationarity of
X(t) being again unnecessary. Thus R/S analysis may also apply to
certain processes that are not stationary.




