
SIAM Review: 10, 1968, 422-437. H11

Fractional Brownian motions, fractional noises
and applications (M & Van Ness 1968)

THE TERM “FRACTIONAL BROWNIAN MOTIONS” and the abbrevi-
ation FBMs will be used to denote a family of Gaussian random functions
defined as follows. Let B(t) be ordinary Brownian motion, and H be a
parameter satisfying 0 < H < 1. Then the FBM of the exponent H is a
moving average of dB(t) in which past increments of B(t) are weighted by
the kernel (t − s)H − 1/2. We believe that FBMs provide useful models for a
host of natural time series and that their curious properties deserve to be
presented to scientists, engineers and statisticians.

 1. INTRODUCTION

The basic feature of FBMs is that the “span of interdependence” between
their increments can be said to be infinite. In contrast, the study of
random functions has been overwhelmingly devoted to sequences of inde-
pendent random variables, Markov processes and other random functions
having the property that sufficiently distant samples of these functions are
independent or nearly independent. On the contrary, empirical studies of
random chance phenomena often suggest a strong interdependence
between distant samples.

One class of examples arises in economics. It is known that economic
time series “typically” exhibit cycles of all orders of magnitude; the
slowest cycles have periods of duration comparable to the total sample
size. The sample spectra of such series show no sharp “pure period” but



H11  ♦ ♦ FRACTIONAL BROWNIAN MOTIONS (WITH J.W. VAN NESS) 255

a spectral density with a sharp peak near frequencies close to the inverse
of the sample size.

Another class of examples arises in the study of fluctuations in solids.
Many such fluctuations are called “1/f noises” because their sample spec-
tral density takes the form λ1 − 2H, where λ is the frequency and H is a
number always satisfying 1/2 < H < 1, and often close to 1. However,
since values of H far from 1 are also frequently observed, the term “1/f
noise” is inaccurate. It is also unwieldy. With some trepidation, due to
the availability of several alternative expressions, we take this opportunity
to propose that “1/f noises” be relabeled fractional noises (see M 1967i).

A third class of phenomena with extremely long interdependence is
encountered in hydrology: Hurst 1951, 1956 found that the range (to be
defined below) of cumulated water flows varies proportionately to dH with
1/2 < H < 1. This fact will be linked in this paper to the presence of an
infinite span of interdependence between successive water flows. Hurst's
law is likely to acquire significant practical importance in the design of
water systems.

These and related empirical findings suggest that it is desirable to
identify and to study in detail many specific, simple families of random
functions that are in some way “typical” of asymptotic dependence. Since
our purpose is not to contribute to the development of analytical tech-
niques of probability, we selected FBM because it allows us to derive
results of practical interest with a minimum of mathematical difficulty.
Extensive use is made of the concept of “self-affinity,” a form of invari-
ance with respect to changes of time scale. A few self-affine processes
other than FBMs are considered in passing. From the purely mathematical
viewpoint, our work is, in retrospect, largely expository. While writing
our paper we discovered that FBMs were already considered (implicitly)
in Kolmogorov 1940, Hunt 1951, Lamperti 1962, Yaglom 1958 p. 423,
Yaglom 1965 p. 262. These little known references contain a wealth of
material to which the applications we listed should draw general interest.

2. DEFINITION: FRACTIONAL BROWNIAN MOTION AS MOVING
AVERAGE DEFINING A FRACTIONAL INTEGRO-DIFFERENTIAL
TRANSFORM OF THE WIENER BROWNIAN MOTION

As usual, t designates time ( − ∞ < t < ∞) and ω designates the set of all
values of a random function (where ω belongs to a sample space Ω). The
ordinary Brownian motion B(t, ω) of Bachelier, Wiener and Lévy, is a real
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random function with independent Gaussian increments; it is such that
B(t2, ω) − B(t1, ω) has mean zero and variance  

 
t2 − t1 

 
, and is such that, if

the intervals (t1, t2) and (t3, t4) do not overlap, B(t2, ω) − B(t1, ω) is inde-
pendent of B(t4, ω) − B(t3, ω). The fact that the standard deviation of the
increment B(t + T, ω) − B(t, ω) with T > 0 is equal to T1/2 is often referred
to as the “T1/2 law.”

 Definition 2.1.  Let 0 < H < 1, and let b0 be an arbitrary real number. We
call the following random function BH(t, ω) the reduced fractional Brownian
motion with parameter H and starting value b0 at time t = 0. For t > 0,
BH(t, ω) is defined by

BH(0, ω) = b0

BH(t, ω) − BH(0, ω) = 1
Γ(H + 1/2)




⌠
⌡

0

−∞
[(t − s)H − 1/2 − ( − s)H − 1/2]dB(s, ω)

+ ⌠⌡
t

0
(t − s)H − 1/2dB(s, ω)




.

An analogous rule holds for t < 0. The integration is taken in the
pointwise sense (as well as in the mean square sense), using the usual
methods involving integration by parts.

Note that if b0 = 0, then B1/2(t, ω) = B(t, ω). For other values of H,
BH(t, ω) is called a fractional derivative or a fractional integral of B(t, ω)
(Weyl 1917).

The definition of BH becomes easier to remember and more symmetric
after it is restated as a convergent difference of divergent integrals,

B H(t 2, ω) − B H(t 1, ω) = 1
Γ(H + 1/2)




⌠
⌡

t2

−∞
(t − s)H − 1/2dB(s, ω)

− ⌠
⌡

t1

−∞
(t − s)H − 1/2dB(s, ω)




.

The FBMs corresponding to 0 < H < 1/2, 1/2 < H < 1, and H = 1/2,
respectively, differ in many significant ways.
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Paul Lévy 1953 (p. 357) briefly commented on a similar but better
known moving average of B(t, ω), namely, the Holmgren-Riemann-
Liouville fractional integral

B0
H(t, ω) = 1

Γ(H + 1/2)
⌠
⌡

t

0
(t − s)H − 1/2dB(s, ω).

Here, H may be any positive number for many applications. This integral
gives excessive weight to the location of the origin which is why Weyl's
integral was introduced (see comments in Zygmund 1959, Section XII.8).

If B(t, ω) is replaced by a complex-valued Brownian motion, the inte-
gral that defines BH yields the complex fractional Brownian motion.

3. SELF-AFFINITY PROPERTIES OF FBM

 Definition 3.1.  The notation {X(t, ω)} =
∆ {Y(t, ω)} means that the two

random functions X(t, ω) and Y(t, ω) have the same finite joint distrib-
ution functions (a fortiori, the same space).

 Definition 3.2.  The increments of a random function X(t, ω) defined for
− ∞ < t < ∞ are said to be self-affine with the exponent H ≥ 0 if, for any
h > 0 and for any t0,

{X(t0 + τ, ω) − X(t0, ω)} =∆ {h− H X(t0 + hτ, ω) − X(t0, ω) }.

The following theorem motivated the introduction of FBM.

 Theorem 3.3.  The increments of BH(t, ω) are stationary and self-affine with
parameter H.

 Corollary 3.4.  A TH law for the standard deviation of BH is stated as
follows:

�  
 
BH(t + T, ω) − BH(t, ω)  

2
= T2HVH,

where
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VH =  
 
Γ(H + 1/2)  

− 2


⌠
⌡

0

−∞
[(1 − s)H − 1/2 − ( − s)H − 1/2]2ds + 1

2H




.

 Definition 3.5.  Let X(t, ω) be a real-valued random function. Its cumula-
tive range is defined to be

M(t, T, ω) = sup
t ≤ s ≤ t + T

X(s, ω) − X(t, ω) − inf
t ≤ s ≤ t + T

X(s, ω) − X(t, ω) .

Define M(T, ω) as M(0, T, ω). If X(t, ω) has continuous sample paths (as
BH does by Proposition 4.1) and t and T are finite, one can replace sup by
max and inf by min.

 Corollary 3.6.  A TH law for the sequential range of a process of self-affine
increments is stated as follows: if X(t, ω) has self-affine increments with
parameter H, then

M(T, ω) =∆ THM(1, ω).

For example, if X(t, ω) = B(t, ω), then T− 1/2M(t, T, ω) has a distrib-
ution independent of both t and T, which is described in Feller 1951.

Remark. Definition 3.1 means that, when t ≥ t0, X(t, ω) − X(t0, ω) is a
“semistable stochastic process” in the sense of Lamperti 1962. Semista-
bility is a weaker property than self-affinity of the increments. For
example, Lévy's Riemann-Liouville fractional integral of B(t, ω) is semi-
stable for all H > 0. {P.S. 1999. But it is not self-affine.}

If X(t, ω) is semistable with parameter H and has stationary incre-
ments, then X(t, ω) is the restriction to t ≥ 0 of a process with self-affine
increments with parameter H.

One might think that definition 3.2 could be generalized by replacing
the h− H in Definition 3.1. by a more general factor A(h). However, A(h)
must satisfy A(h′h′′) = A(h′)A(h′′). If A(h) is measurable, or under suitable
other conditions, one must have A(h) = h− H, as we have postulated.

3.1. Some partial converses

 Proposition 3.7.  If X(t, ω) has self-affine and stationary increments and is
mean square continuous, then 0 ≤ H < 1.

Proof. By Minkowski's inequality, for any τ1 and τ2 > 0,
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� X(t + τ1 + τ2) − X(t)

2 
 


1/2

≤
 
 

� X(t + τ1 + τ2) − X(t + τ1)

2 
 


1/2

+ {� X(t + τ1) − X(t)
2}

1/2

.

By hypothesis, there is a constant V such that

�  
 
X(t + τ, ω) − X(t, ω)  

2
= Vτ2H.

Therefore,

V1/2
 
 
τ1 + τ2  

H ≤ V1/2
 
 
τH

1 + τH
2  ,

which implies that H < 1. Mean square continuity requires that H ≥ 0.

 Proposition 3.8.  If X(t, ω) is a Gaussian random function satisfying the
conditions of Proposition 3.7. and is not constant, then it must be FBM.

Proof. A Gaussian process is determined by its covariance and mean
properties.

3.2. Digression concerning some non-Gaussian self-affine processes

X(t, ω) may satisfy the conditions of Proposition 3.7 without being
Gaussian. This is indicated by an example given in Rosenblatt 1960 (pp.
434-435).

If the requirement of continuity is abandoned, many other interesting
self-affine processes suggest themselves. For example, one may replace
B(t) by a non-Gaussian process whose increments are stable random vari-
ables, as defined by Paul Lévy. This leads to “fractional Lévy-stable
random functions,” which also have an infinite span of interdependence.

3.3. First digression concerning data analysis: Hurst's empirical results
concerning M(T, ω)

M 1965h{H9} singled out FBM to account for some empirical results
reported in Hurst 1965, concerning the range M in the records of water
flows through the Nile and other rivers, the price of wheat and other
physical series, such as rainfall, temperatures, pressures, thickness of tree
rings, thickness of valves (stratified mudbeds) and sunspot numbers.
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In the first approximation, Hurst's empirical conclusion is that the
range is proportional to TH, where 1/2 < H < 1. This result was a source of
great surprise for statisticians. Indeed, processes of the form

X(t, ω) = ⌠⌡
t

0
Y(s, ω)ds,

where Y(s, ω) is stationary with summable covariance function, have a
sequential range asymptotically proportional to 

√
t . Thus, the statisticians

who discussed Hurst's findings were led to conclude that the river flows
cannot be represented by stationary stochastic processes. As shown in the
next section, the existence of FBM with 1/2 < H < 1 indicates that this con-
clusion is not necessarily correct. However, we shall have to return to
Hurst's evidence, because his empirical evaluation actually deals with the
sequential range after removal of the sample mean (see Section 5.10).

4. CONTINUITY AND NON-DIFFERENTIABILITY OF FBM

The variance given by Corollary 3.4 tends to zero with τ; hence BH(t, ω) is
mean square continuous. However, this property taken alone does not tell
us anything about the sample paths.

 Proposition 4.1  Almost all sample paths of BH(t, ω) are continuous (t in
any compact set).

Proof. If H > 1/2, the statement follows immediately from the
expression in Corollary 3.4 combined with a theorem of Kolmogorov (see
Loève 1960, p. 519). In any case, we can choose k such that 0 < k < H and
note that (dropping the ω in the notation)

Γ(H + 1/2)1/k
� 

 
BH(t + τ) − BH(t) 

 1/k = Γ(H + 1/2)1/k� 
 
BH(τ) − BH(0) 

 1/k

= � 

 
⌠
⌡

τ

−∞
(τ − s)H − 1/2 − N(s)( − s)H − 1/2 dB(s) 

 1/k

,

where N(s) = 1 if s ≤ 0 and N(s) = 0 if s > 0. Making a change of variables,
the expression above takes the form
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t 

 H/k� 

 
⌠
⌡

1

−∞

(1 − s)H − 1/2 − N(s)( − s)H − 1/2

dB(s) 

 1/k 
=

 
t 

 H/kV(H, k),

and we again apply Kolmogorov's theorem.

The process BH(t, ω) is not mean square differentiable (this follows by
an obvious modification of the next proposition), and it almost surely does
not have differentiable sample paths.

Proposition 4.2 Almost all sample paths of BH(t, ω) are not differentiable
for any t; in fact,

lim t → t0
sup

BH(t, ω) − BH(t0, ω)
t − t0

= ∞ with probability one.

Proof. Assuming BH(0) = 0, the identity in Definition 3.2 yields

 

BH(t, ω) − BH(t0, ω)
t − t0

=∆ (t − t0)
H − 1{BH(t0 + 1, ω) − B(t0, ω)}

=∆ (t − t0)
H − 1BH(1, ω).

Define the events

A(t, ω) = 




sup
0 ≤ s ≤ t

BH(s, ω)
s > d.





For any sequence such that tn↓0, we have

A(tn, ω)⊃A(tn + 1, ω);

thus,

P{ lim n →∞A(tn)} = lim n →∞P{A(tn)}

and

P{A(tn)} ≥ P
 
 


BH(tn)
tn

> d
 
 


= P{ BH(1) > t1 − H
n d},
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which tends to 1 as n → ∞. Note that this proof assumes nothing beyond
self-affinity.

4.1. Fractional Gaussian noises and approximations thereto

The fact that FBM has no derivative is inconvenient. As is well-known,
ordinary Brownian motion is also non-differentiable. Several methods, not
always rigorous, have evolved that attempt to define the concept of the
“derivative of Brownian motion.” These constructs are called “white
Gaussian noises.” Analogous approaches can be followed with the frac-
tional Brownian motions and lead to what may be called “fractional
Gaussian noises.”

The most elementary method of circumventing the FBMs lack of deriv-
ative is to smooth BH by selecting δ > 0 and forming the random function

BH(t, ω; δ) = δ− 1⌠
⌡

t + δ

t
BH(s, ω)ds = ⌠⌡

∞

−∞
BH(s, ω)ϕ1(t − s)ds,

where

ϕ1(t) = 




δ
− 1 if 0 ≤ t ≤ δ,

0 otherwise .

The function BH(t, ω; δ) does have a stationary derivative, namely,

B′H(t, ω; δ) = δ− 1 BH(t + δ, ω) − BH(t, ω) = − ⌠⌡
∞

−∞
BH(s, ω)dϕ1(t − s).

The derivative is almost surely continuous, but surely non-differentiable.

When δ is sufficiently small, BH(t, ω) and BH(t, ω; δ) are indistinguish-
able for all “practical purposes” that disregard the high frequency effects
to which the non-differentiability of BH(t, ω) is due (see Section 7).

To insure higher-orders of differentiability, one can proceed step by
step, replacing ϕ1 by increasingly smoother kernels, or use an infinitely
differentiable kernel ϕ, which vanishes outside some finite interval and
integrates to one. Then, the kth derivative of
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⌠
⌡

∞

−∞
BH(s, ω)ϕ(t − s)ds

is

( − 1)k⌠
⌡

∞

−∞
BH(s, ω)ϕ(k)(t − s)ds,

which is continuous and stationary for all positive integers k. This
approach interprets B′H as not being a random function but a “generalized
random function,” also called a Schwartz distribution (see Gelfand &
Vilenkin 1964). For practical purposes, Schwartz distributions are better
avoided. We shall be concerned with determining whether finite differ-
ences of BH are reasonable approximations of B′H.

4.2. Digression concerning some non-Gaussian fractional noises

The non-Gaussian fractional functions of Section 3.2 are, in most cases,
also non-differentiable. However, several ways of defining a generalized
differential, or a differential after smoothing do exist. Such constructs,
when possible, may be called “fractional non-Gaussian noises.” There is no
doubt that such noises are required to model some of the phenomena
listed in the Introduction.

5. SOME CORRELATIONS AND THEIR APPLICATIONS TO THE
EXTRAPOLATION AND INTERPOLATION OF BH(t, ω)

In this section, we pause to examine certain interesting properties which
fractional Brownian motion has with regard to extrapolation and interpo-
lation. This excursion will familiarize the reader with these processes, and
will identify problems for which FBM is a good model.

5.1. The correlation between two non-consecutive increments of BH(t, ω)

Let T, T1 and T2 be fixed and nonnegative. Then (dropping the ω in the
notation) compute the correlation between the increments of BH(t) over the
following time intervals: T/2 to T1 and − T/2 to T2. One has



264 SIAM REVIEW: 10, 1968, 422-437 ♦ ♦ H11

2�

{  
 
BH(T/2 + T1) − BH(T/2)   

 
BH( − T/2) − BH( − T/2 − T2)  

= �  
 
BH(T/2 + T1) − BH( − T/2 − T2)  

2
+ �  

 
BH(T/2) − BH( − T/2)  

2

− �  
 
BH(T/2 + T1) − BH( − T/2)  

2 − �  
 
BH(T/2) − BH( − T/2 − T2)  

2
.

Thus, the desired correlation is

C(T, T1, T2) = 1  
2

(T + T1 + T2)
2H + T2H − (T + T1)

2H − (T + T2)
2H

TH
1 TH

2

If T > 0, we can write s1 = T1/T and s2 = T2/T, and can see that the cor-
relation is only a function of the reduced variables s1 and s2 (as expected
from self-affinity):

C(s1, s2) = 1  
2

(1 + s1 + s2)
2H + 1 − (1 + s1)

2H − (1 + s2)
2H

(s1s2)
H

.

For all s1 and s2, this correlation is positive if 1/2 < H < 1 and negative
if 0 < H < 1/2. This is the first example in a series where the sign of
H − 1/2 is an important distinguishing factor.

5.2. Failure of FBM to be strongly mixing

Now, consider the least upper bound of the absolute value of the corre-
lation C(T, T1, T2) over various sets of values of T, T1 and T2. Fixing T1 and
T2, we see that this absolute value attains a maximum for T = 0. Then,
varying T 1/T 2, we see that for T 1 = T 2 it attains a maximum equal to
 
 
22H − 1 − 1 > 0. If T is fixed and > 0,  

 
22H − 1 − 1 

 
is not an attainable

maximum, but remains a least upper bound (corresponding to T1 = T2 = ∞).

This leads us to the condition of strong mixing in Rosenblatt 1960,
which is a form of asymptotic independence. In the Gaussian case,
Kolmogorov and Rozanov showed that strong mixing requires a certain
maximal correlation coefficient to tend to zero as the distance between the
two time points tends to infinity. In the case of FBM, by self-affinity and
from the form of C(T, T1, T2) in Section 5.1, this coefficient is bounded
below by 22H − 1 − 1 > 0. Therefore, strong mixing does not hold for the
increments of FBM, except in the classical Brownian case H = 1/2.

Strong mixing was originally introduced as one of several conditions
that insure a random process satisfies the central limit theorem. This
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question of limit does not arise here, since the increments of FBM consti-
tute a Gaussian process and satisfy the central limit theorem trivially.
Therefore, the practical importance of strong mixing is to be found else-
where. Stating that the increments of an FBM are not strongly mixing
happens to be a convenient way of expressing the idea that the span of
interdependence between such increments is infinite (see end of Section
6.3).

5.3. Extrapolation and interpolation of BH(t, ω) from its values
BH(0, ω) = 0 and BH(T, ω) with T > 0 to its values for − ∞ < t < ∞
Recall that if G1 and G2 are two dependent Gaussian random variables
with zero mean, then

�  
 
G1 G2  

G2
=

�  
 
G1G2  

�  
 
G2

2  

.

Thus, by setting BH(0) = 0, we write

�  
 
BH(t) BH(T)  

BH(T)
=

�  
 
BH(t)BH(T)  

�  
 
B2

H(T)  

=
�B2

H(t) + �B2
H(T) − �[BH(t) − BH(T)]2

2�[B2
H(T)]

.

This yields the interpolatory/extrapolatory formula

�  
 
BH(t) BH(T)  

BH(T)
= t2H + T2H − t − T

2H

2T2H
.

Introducing the “reduced” variable s = t/T, this expression takes the fol-
lowing form, which is illustrated by Figure 1 and defines the function
Q H(s)

�  
 
BH(sT) BH(T)  

BH(T)
= 1

2  
 
s2H + 1 − s − 1

2H
 

≡ QH(s).

In the case of Brownian motion with H = 1/2, one has
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FIGURE C11-1. Freehand graphs of the shape of several important functions intro-
duced in the text. The function QH occurs in the interpolation and extrapo-
lation of BH (Section 5.3). The function CH(τ, δ) is the covariance of the
process of finite differences BH(t + δ, ω) − BH(t, ω), where t is a continuous
time (Section 6). The function DH(s, δ) occurs in Section 6.1. The differences
between the two cases 0 < H < 1/2 and 1/2 < H < 1 are striking.

{P.S. 2000: accurate graphs of these functions differ significantly from this
figure; they are provided, together with important additional comments, in the
Post-publication appendix that follows this chapter.}
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QH(s)

 
 
 
 


= 0 for s < 0

= s for 0 < s < 1

= 1 for s > 0.

This QH(s) is represented by a kinked curve consisting of straight intervals
and half-lines.

When 1/2 < H < 1, QH(s) has a continuous derivative Q′H(s) which sat-
isfies

0 < Q′H(0), Q′H(1) < 1 and Q′H(1/2) > 1.

Finally, when 0 < H < 1/2, QH(s) is differentiable everywhere except at
the abscissas s = 0 and s = 1, where it has a cusp.

5.4. The extrapolating function QH(s) = 1
2

[s2H + 1 − s − 1
2H

] for s → ∞
For the Brownian case H = 1/2, we have

�  
 
B(t, ω) B(T, ω)  = B(T, ω) for all t > T.

Thus, as is well-known, the best forecast is that B(t, ω) will not change.

In the second case, 1/2 < H < 1,

QH(s) ∼ H 
 
s 

 2H − 1
for large s,

and the extrapolation involves a nonlinear “pseudo-trend” that
diverges to infinity.

In the remaining case, 0 < H < 1/2,

QH(s) ∼ 1/2 for large s,

and the extrapolation has a nonlinear “pseudo-trend” that converges to

1  
2

BH(0, ω) + BH(T, ω) .
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5.5. Extrapolation for large t when � BH(t, ω) ≠ 0 and the problem of
“variable trends”

In analyzing a time series X(t, ω) without “seasonal effects,” it is cus-
tomary to search for a decomposition into a “linear trend component” and
an “oscillatory component.” The former is usually an estimate of

�  
 
X(t + τ, ω) − X(t, ω)  ,

and it is interpreted as being due to major “causal” changes in the mech-
anism generating X(t, ω). To the contrary, the latter is interpreted as an
“uncontrollable” stationary process, hopefully free of low-frequency com-
ponents.

It is obvious that, in the case of FBM with H ≠ 1/2, difficult statistical
problems are raised by the task of distinguishing the linear trend ∆t from
the nonlinear “trends” just described. In reality, FBM falls outside the
usual dichotomy between causal trends and random perturbations. {P.S.
1999: Further comments on this topic are found in the post-publication
appendix that follows.}

5.6. Digression concerning data analysis

Those who analyze time series know that to decompose into trend and
oscillation is difficult. For example, in ex-post factum analyses of long
samples of data, the interpolated trend often appears to vary between suc-
cessive subsamples. To avoid the difficulty one can assume that there are
nonlinear trends or that the series is otherwise nonstationary. Examples
are found in the literature of economics and in the discussions of Hurst's
work.

However, the same phenomena can be explained also by assuming
that X(t, ω) has the overall characteristics of FBM. A confirmation of this
conjecture is found in the empirical observation that, for these series, the
estimated spectral density is very “red.” That is, no matter how large the
sample duration T, the spectrum has a large amount of energy in frequen-
cies that are not much greater than 1/T (see Adelman 1965 and Granger
1966). Although these two difficulties were observed independently, they
are closely related, and FBM provides an excellent context in which to
study their interplay.
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5.7. Interpolation by QH(s) = 1
2

[s2H + 1 − s − 1
2H

] for 0 < s < 1

In the Brownian case, the interpolate of QH(s) is linear, which is well-
known.

When 1/2 < H < 1, the interpolate has the form illustrated in Figure 1.
The slope Q′H(s) is largest at s = 1/2, where Q′H(1/2) = H22 − 2H. This
maximum slope is largest for H = 1/2 log2e, when it is equal to 1.06. Thus,
QH(s) for 0 < s < 1 is nearly linear if 1/2 < H < 1.

When 0 < H < 1/2, the interpolate has an S-shape which is inverted
with respect to that of the previous case (see Figure 1).

5.8. The variance of BH(0, ω) and BH(T, ω)

The usual formulas for the Gaussian case tell us that, given BH(0, ω) and
BH(T, ω), the variance of BH(sT, ω) is smaller for the interpolate and
extrapolate, and equals

VH(Ts)2H
 
 

1 − 1 + s2H − 1 − s

2H 2

4s2H

 
 

.

For large values of s, this tends to VH(Ts)2H. Thus, σ, defined as the
standard deviation of BH(sT, ω), is asymptotically proportional to sH.
Moreover, as s → ∞,

σ

�  
 
B(sT, ω) B(T, ω)  

∼




s1 − H if 1/2 < H < 1,
sH if 0 < H < 1/2.

Note that, as s increases, this ratio always increases without bound.

5.9. Property of conditional self-affinity

While on the subject of conditional random variables, it is appropriate to
discuss a property that we call conditional self-affinity. This concept plays
an important role in the theory developed in M 1967b{N10}. Consider the
random function

UH[(h, ω); T, BH(T, ω)] = T− H{ BH(T, ω) 
 
BH(T, ω) − QH(h)BH(T, ω)},
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where the vertical slash denotes conditioning, as usual. For example, if
BH(T, ω) = b, then BH(Th, ω) 

 
BH(T, ω) is the restriction of BH(Th, ω) to

{ω 
 
BH(T, ω) = b} with the corresponding conditional probability measure.

Since UH is Gaussian, it is determined by its mean and covariance matrix.
The former vanishes and the latter is independent of T and BH(T, ω). This
interesting property of self-affinity differs from that discussed in Section 3
by the presence of the variable conditioning event BH(T, ω).

Consider the random functions of the form

T− H{  
 
BH(hT, ω) BH(T, ω)  − Q(h)BH(T, ω)}.

The choice Q(h) = QH(h) minimizes the variance of this function, and is
the only way to insure that its value is independent of BH(T, ω).

5.10. Second data analysis digression concerning Hurst's problem

In Hurst's study of the range (as in the study of the trends in Section 5.5),
the mean of X(t, ω) is not known. To model this situation, continue to
assume BH(0, ω) = 0 and consider the expression

B
∼

H(t, ω; ∆) ≡ BH(t, ω) + t∆.

When the constant ∆ is unknown, it must be estimated from data. By
symmetry, a reasonable estimate is

∆
∼

= 1
T

B
∼

H(T, ω; ∆).

When substituted into the interpolatory/extrapolatory formula, ∆∼  yields

�
∧

 
 
B
∼

H(hT, ω; ∆) B
∼

H(T, ω; ∆)  = hB
∼

H(T, ω; ∆).

However, the value of ∆ does not affect the range, because the quantity

M*H(T, s, ω) = max
0 ≤ h ≤ s

B∼H(hT, ω; ∆) − hB∼H(T, ω; ∆)

− min
0 ≤ h ≤ s

B∼H(hT, ω; ∆) − hB∼H(T, ω; ∆)
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is independent of T and satisfies the sH law. This further explains the
empirical finding of Hurst.

The results of Section 5 generalize easily to cases where one knows the
value of the process at more than two points. The formulas become much
more complicated, but it is worth noting again that they are functions of
certain “reduced” variables.

6. THE DERIVATIVE OF THE SMOOTHED PROCESS BH(t, ω; δ)

The derivative process, B′H(t, ω; δ), is itself interesting as a stochastic
model. Being stationary, it has a covariance of the form

CH(τ; δ) = � B′H(t, ω; δ) 
 
B′H(t + τ, ω; δ) .

Without loss of generality, assume BH(0, ω) = 0. Then

CH(τ; δ) = 1
2

VHδ2H − 2











 
τ 

δ
+ 1





2H 
− 2 τ

δ

 2H 
+

 
τ 

δ
− 1 

 2H






.

If τ�δ,

CH(τ, δ) ∼ VHH(2H − 1) 
 
τ 

 2H − 2
.

This has the same sign as H − 1/2. It tends to zero as τ → ∞, which (by
a theorem of Maruyama 1949) means that B′H(t, ω; δ) is weakly mixing
and ergodic. However, from our remarks in Section 5, B′H(t, ω; δ) is not
strong mixing (this also follows from the representation given in Section
4.2).

For τ = 0,

CH(0, δ) = VHδ2H − 2;

for small values of τ /δ,

CH(0; δ) − CH(τ; δ) ∼ VHδ
− 2

τ
2H.
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If 1/2 < H < 1, CH(τ; δ) is positive and finite for all τ, and

⌠
⌡

∞

0
CH(s, δ)ds = ∞.

If 0 < H < 1/2, CH(τ; δ) changes sign once from positive to negative, at
a value of τ proportional to δ, and

⌠
⌡

∞

0
CH(s, δ)ds = 0.

6.1. Extrapolation of B′H(t, ω; δ) and BH(t, ω)

Given {B(s, ω), − ∞ < s < t}, and defining N(s) as in the proof of Proposi-
tion 4.1, the least squares estimate of BH(t + τ, ω) is

B
∧

H(t + τ, ω) = 1
Γ(H + 1/2)

⌠
⌡

t

−∞

(t + τ − s)H − 1/2 − ( − 1)H − 1/2N(s)dB(s, ω).

If τ > 0, B
∧

H is infinitely differentiable (mean square or a.e.) in τ. Thus,

 

dB
∧

H(t + τ, ω)
dτ

= H − 1/2
Γ(H + 1/2)

⌠
⌡

t

−∞
(t + τ − s)H − 3/2dB(s, ω).

Define the decay kernel DH(t, δ) as follows:

DH(t; δ) = 







δΓ(H + 1/2)
− 1

tH − 1/2

δΓ(H + 1/2)
− 1

tH − 1/2 − (t − δ)H − 1/2

for t ≤ δ,

for t > δ.

Then,

B′H(t, ω; δ) = ⌠⌡
t

−∞
DH(t − s; δ)dB(s + δ, ω),
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which is a one-sided moving average. It follows that the least squares
predictor B′H(t + τ, ω; δ), conditioned by a value of {B(s, ω), − ∞ < s ≤ t}, is

B
∧
′H(t + τ, ω; δ) = ⌠⌡

t − δ

−∞
DH(t + τ − s; δ)dB(s + δ, ω),

which tends to B
∧
′H(t + τ, ω) as δ → 0.

A fundamental relation between the “dynamic” law of relaxation of
perturbations D and the “static” law of the distribution of the spontaneous
fluctuations as expressed by the covariance CH(t; δ) is the well-known
formula

CH(t; δ) = ⌠⌡
∞

0
DH(s, δ)DH(s + t, δ)ds.

6.2. Second digression concerning data analysis

A primary reason for the practical importance of fractional Brownian
motion as a model arises from the fact that power function decay laws
have often been observed by experimentalists. In fact, it seems likely that
they will be useful even in cases which are currently modeled by the
exponential law, D(s) ∼ e− s/a. The exponential decay law characterizes the
classical case when X(t, ω) is a stationary Markov-Gauss process. It tends
to be adopted because of its tractability and because the span of observ-
able events is too short to conclude reliably otherwise. In the exponential
case, the percentage attenuation of a perturbation between the times 0 and
t can be obtained as the product of two successive independent atten-
uations: between the times 0 and t0 (where 0 < t0 < t) and between the
times t0 and t.

Things are very different in the case of fractional Brownian motion,
when the age is critically important in assessing future behavior. In eco-
nomics, for example, the age-dependent law sH − 3/2 of the “derivative” of
BH(t, ω) seems preferable to the exponential law, both as a law of depreci-
ation and as an expression of the attenuation of the effects of long past
“causes.”
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6.3. Some conditional expectation least squares predictors

Given BH(0, ω) = 0 and B′H(0, ω; δ), it is illuminating to reexamine, in
terms of CH(t, δ), certain extrapolation problems discussed in Section 5. It
is clear that

�  
 
B′H(s, ω; δ) B′H(0, ω; δ)  

B′H(0, ω; δ)
=

CH(s; δ)
CH(0; δ)

.

Integrating from 0 to t, we obtain

�  
 
BH(t, ω; δ) − BH(0, ω; δ) B′H(0, ω; δ)  

B′H(0, ω; δ)
=

⌠
⌡

t

0
CH(s, δ)ds

CH(0; δ)
.

Now consider the limit as t → ∞ of the expectation written on the left-
hand side. This limit is infinite when 1/2 < H < 1, and it vanishes when
0 < H < 1/2. It is interesting in this light to recall that Taylor 1921 pro-
posed that the integral of the covariance can be used as a quantitative
measure of memory. If 1/2 < H < 1, this measure correctly asserts that the
memory of the process is infinite. However, when 0 < H < 1/2, the Taylor
measure asserts that the memory vanishes; in fact (as we saw in dis-
cussing strong mixing), it is infinite.

 7. SPECTRA

A very interesting frequency representation of the increments of fractional
Brownian motion was obtained by Hunt 1951 (p. 67):

B H(t 2, ω) − B H(t 1, ω) = V*H
⌠
⌡

∞

0
(e2πiλt2 − e2πiλt1)λ− H − 1/2dB(λ, ω),

where V*H is a constant. This suggests that BH(t, ω) has a “spectral
density” proportional to λ− 2H − 1. However, spectral densities of nonsta-
tionary random functions are difficult to interpret. It is tempting to differ-
entiate BH and claim that B′H has a spectral density proportional to λ1 − 2H.
If 1/2 < H < 1, this formal density becomes infinite for λ = 0. Spectral den-
sities proportional to λ1 − 2H near λ = 0, where 1/2 < H < 1, are very impor-
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tant in electronics (M 1967i{N }). The proportionality of the spectral
density to λ1 − 2H also suggests that there is infinite energy at high frequen-
cies. Both the derivative B′ and its spectrum can be interpreted via
Schwartz distributions. However, these are not needed to examine the
spectrum of B′H(t, ω; δ).

The spectral density of B′H(t, ω; δ) is

G′H(λ; δ) = 4⌠
⌡

∞

0
CH(s; δ) cos (2πλs)ds

= 2VHδ− 2⌠
⌡

∞

0
(s + δ)2H − 2s2H +

 
s − δ 

 2H
cos(2πλs)ds.

A sort of self-affinity property of B′H is expressed by the fact that one
can define a function G* by writing

G′H(λ; δ) = 2VHδ2H − 1G*H(δλ).

For small values of λδ, one has

G*H(δλ) ∼ KH(2πδλ)1 − 2H,

with

KH =
πH(2H − 1)
Γ(2 − 2H)

cos π(H − 1)
− 1 

> 0.

Thus, G′H(λ; δ) behaves like 2KHVH(2πλ)1 − 2H. For fixed λ > 0,
limδ → 0 G′H(λ, δ) is positive, finite and equal to the formal density of B′H.
In other words, changing the value of δ involves modifications whose
energy is primarily concentrated in high frequencies.
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FIGURE C11-2. The top right quarters of the two graphs at the bottom of Figure 1,
representing the functions QH(s) relative to interpolation and extrapolation of
FBM BH(t). The values of H are marked along the right side of this Figure.
The other quarters of those graphs are either obtained by symmetry or empty.

Main observation: on the scale of this figure, all the curves relative to
H > 1/2 nearly collapse for s < 1. The region of largest discrepancies is
enlarged in the box inserted at the upper left on this figure. Other observa-
tion: the curves for H < 1/2 have an extremely sharp cusp near s = 1. There-
fore, the effects of the imposed values of X(0) and X(1) are limited to
t = 0 and t = 1.
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&&&&&  POST-PUBLICATION APPENDIX &&&&&

TOPICS IN FRACTIONAL BROWNIAN MOTION:
TREND REMOVAL AND ROBUSTNESS OR FRAGILITY

This Appendix will denote M & Van Ness 1968 (namely, the body of this
chapter) as MVN. When preparing the original for reprinting, Figure H1
was replotted on the computer. Increased precision paid, as usual. The
carefully redrawn figures, prepared by Daryl Hepting, inspired no nos-
talgia for the pre-computer era and brought out several significant new
facts, which are explored in this Appendix: Repeats of some points
already made in MVN will increase legibility.

Section A.1 concerns the interpolation of BH(t) for 0 < t < T. Given the
values BH(o) and BH(T), the interpolate based on the conditional expecta-
tion of BH(t) is shown in MVN to be non-linear, except for
H = 0.5 and H = 1.0. However, Figure 2 shows that in fact the interpolation
is unexpectedly close to being linear if H > 1/2 and even (to a lesser
degree) when 0.3 < H < 0.5.

Section A.2 comments on the practice of “trend removal,” which is
very widespread in practical statistics and amounts to replacing complete
data by their “bridges”. In the case of FBM, the non-linearity of the
interpolate makes this practice offensive to the theoretician. But the non-
linearity is small for H > 1/2 hence not necessarily harmful in practice.

Section A.3 ponders the detailed form of the correlation CH(s) between
distinct increments of BH(t).

Let us define Γ as follows:

Γ = ∑−∞
s = −∞C(s), when time is discrete

FIGURE C11-3. The “bias of linear interpolation,” QH(s) − s, plotted for s = 3/4 as a
function of H > 1/2.
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Γ = ∫∞−∞C(s)ds, when time is continuous

It is shown in MVN that Γ has the following property

Γ = ∞ if H > 1/2 (persistent case)
0 < Γ < ∞ if H = 1/2 (Brownian case)
Γ = 0 if H < 1/2 (antipersistent case) .

When a theoretical C(s) is slightly modified, one expects the properties
Γ = ∞ or 0 < Γ < ∞ to remain unchanged, but the property Γ = 0 to be
easily destroyed. This is one aspect (among many) of the “fragility” of
antipersistence. Nevertheless, antipersistence is robust enough to be
encountered in nature, since the Kolmogorov theory of isotropic turbu-
lence gives H = 1/3 for velocity. Similarly, when C() and Γ are drawn for
data, the precise identity Γ = 0 is very difficult to establish empirically.

A.1. When H > 1/2, the least mean square interpolate of FBM is not quite
linear, but nearly so.

Figure 2, a more accurate combined rendering of the two bottom graphs of
Figure 1 in MVN, illustrates the function

QH(s) = 1/2
 
s 

 2H 
+ 1 −  

s − 1 
 2H

,

which gives the expected value of BH(s) when it is known that
BH(0) = 0 and BH(1) = 1.

Only the half for s > 1/2 is drawn, so as to magnify the important
details in the figure. MVN had been content to obtain the overall shape of
the graph of QH(s) from elementary calculus. Both the extrapolate for all
H and the interpolate for H < 1/2 are as we expected, but the interpolate
brings a surprise.

FIGURE C11-4. Value of H that maximizes the bias QH(s) − s, plotted as a function
of H.
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For H > 1/2, the interpolate is non-linear, to be sure, but the accurate
Figure 2 shows that its departure from linearity is surprisingly slight. Of
course the left and right derivatives of QH(s) at s = 1 are equal for H > ½
(the second derivatives differ). Figure 3 plots, as function of H, the bias
that would be introduced by using a linear interpolate near s = 3/4. At
most, this bias replaces Q = 3/4 by Q = 0.762. It is easy to show that the
largest bias occurs for

H = 1  
2

log log(1 − s) − log log s
log s − log(1 − s)

.

This last expression is plotted on Figure 4 and turns out to be only slightly
above 0.70 over much of the range of s from 0.5 to 1. It is good to note
here that in nature H is often in this range.

A.2. Consequence of the near-linearity of the interpolate for trend
analysis

Old books of economics or practical statistics suggest that a time series
should be decomposed into three components: a trend, which is a linear
function; one or more seasonals, each a sine function; and a random noise
component. This noise component is ordinarily fitted by a stationary
random process. Because the preceding three-terms decomposition is not
questioned, it has often been used for processes like Brownian or fractional

FIGURE C11-5. The correlation function CH(s) plotted as a function of s for s > 0.
For s = 0.5, moving from top to bottom, the value of H is 1.0 and 0.97 near the
top and 0.03 near the bottom. For the intermediate curves, H is a multiple of
0.1.
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Brownian motion, which are not stationary merely of stationary incre-
ments. Let us examine what happens in those cases.

First of all, a definition is needed. Given a time series X(t) from
t = 0 to t = T, the linear trend can be defined in several distinct ways. It
may be fitted by least squares, or it may simply be the linear function

X(0) + (t/T)[X(T) − X(0)]

.

In mathematical studies of Brownian motion the difference between
X(t) and this function is often called “bridge”, and this book seeks to
promote a wide use of this terminology. In practical statistical studies, a
full list of hypotheses is not expected (and in many cases could not be
provided). But the seasonals are written as periodic functions with a zero
long range average and the random noise is usually taken to be of zero
expectation. This implies that, when X(0) and X(T) are known, the linear
trend is expected to represent the expected value of X(t) for the given
X(0) and X(T). In the case of fBm, for H other than H = 1 or 0.5, the
interpolate is not linear, and the above-written trend again splits into two
components: a non-random underlying drift in the expectation 

〈
X(t)

〉
, to

be written as µt, and a random change in the fluctuation X(t) −
〈
X(t)

〉
.

FIGURE C11-6. Blow-up of Figure 5 for H < 1/2 and s near 1.0. Close to s = 1.0,
CH(s) begins by decreasing and is graphed here by three curves with a positive
angle cusp at s = 1.0; then CH(s) increases and is graphed here by two curves
with an increasingly sharp cusp. In the limit H = 0, the cusp is infinitely
sharp, since C0(s) = 0 except that C(1) = − 1/2.
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Detrending is meant to take out µt but unavoidably also takes out more.
In the Brownian case H = 1/2, both components of the trend are linear,
therefore taking them out together is mathematically legitimate. For all
H ≠ 1/2, to the contrary, the interpolate of X(t) − 〈X(t)

〉
is not linear.

This might have been a serious practical difficulty, but in fact is not.
When H > 1/2 and even for H slightly below 1/2, the interpolate is near-
linear. And when H is small, the value of µ can be estimated reliably
from the data.

A.3. On the correlation CH(s) = 1/2 s + 1
2H − 2 s

2H
+ s − 1

2H

between the increments BH(t + 1) − BH(t) and BH(t + s + 1) − BH(t + s)

Figure 5 is a more precise replotting of the middle line of Figure 1 of
MVN. Reading from top to bottom in the range 0 < s < 1, the values of H
are

0.97; 0.9; 0.8; 0.7; 0.6; 0.5; 0.4; 0.3; 0.2; 0.1; 0.03.

In the Brownian case H = 1/2, one anticipates C1/2(s) = 0 except for s = 0.
But this anticipation holds only for integer values of s. When s is contin-
uous, s > 1 yields C1/2(s) = 0, but 0 < s < 1 yields C1/2(s) = 1 − s.

It is known that BH(t) is only defined for 0 < H < 1. But the correlation
CH(s) remains meaningful for 0 ≤ H ≤ 1, and it is interesting to ponder the
limits values H = 1, or H = 0.

In the limit case H → 1, one hasC1(s) = 1 for all s.

In the limit case H → 0, one hasC0(0) = 0, C0(1) = C0( − 1) → − 1/2 and
C0(s) → 0 for other values of s.

For H < 1/2, Figure 6 enlarges Figure 5 near s = 1. The curves for dif-
ferent H cross each other repeatedly, even for large s. Indeed, for s > > 1
one has CH(s) = − 2H(1 − 2H)s2H − 2. For fixed s, this quantity is smallest
when log s = − (2H)− 1 + (1 − 2H)− 1. The value sH where CH(s) is lowest
increases as H → 1/2. As H → 0, CH(s) increases to 0 for all s.

Once again, the identity Γ = 0 holds when H < 1/2 thanks to a very
precise balance between positive and negative values, as made intuitive by
Figures 5 and 6. These extraordinarily tight relations are easily destroyed
by even a small and local change in C(s).
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&&&&&&&&&&&& ANNOTATIONS  &&&&&&&&&&&&

Terminology and format. Throughout the body of this chapter the proper
term, self-affine, was substituted for the original self-similar. Extensive and
awkward footnotes were incorporated into the text.

How this paper came to be written. This story is told in Section 4.2 of
Chapter H8.

 Preprints.  Like Chapter H9, this chapter expands upon the contents of
two early IBM Internal Reports, M 1964h and M1964i.




