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1. INTRODUCTION

Class field theory can be summarized as the following: “if K is a local or a
global field, then the structure of all abelian extensions of K is explicitly de-
termined by the arithmetic inside of K itself.” More precisely, class field the-
ory provides canonical “reciprocity isomorphisms” G(L, K) — Gal(L/K),
where G(L, K) is a group that can be determined from K alone but depends
on L, and K ¢ L ¢ K% C K is the inclusion of K inside of its maximal
abelian extension sitting inside of a fixed algebraic closure of K. Notice that
standard Galois theory gives us Gal(K®/K) = Gal(K /K)®™.

In this exposition we will treat two distinct approaches to class field the-
ory. The first is through algebraic geometry. There, we will consider ex-
tensions of function fields as corresponding to branched covers of algebraic
curves. We will deduce class field theory through the use of generalized Ja-
cobians. The program of understanding class field theory geometrically was
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2 T. KOBERDA

initiated by Lang and carried out by Serre, and in essence the theory is the
same as from the arithmetic point of view.

The second approach is purely algebraic and mostly follows the work of
Serre and Tate. We will begin with tools from Galois cohomology, develop
the local theory, and then treat the global theory. Global class field theory
uses the local theory in a strong way. We will illustrate this by giving a
proof of the Kronecker-Weber theorem, which can be viewed as the first
instance of global class field theory, that is based on local class field theory.
We will go as far as giving as explicit of a description of the reciprocity map
as possible, and we will explain some specific examples.

Finally, we will delve into an analogy between number fields and coverings
of $2 branched over links. All links and knots we consider will be assumed to
be tame. We will be able to pass between the PL category and the smooth
category without loss of generality.

For the sake of brevity, we will only give references for proofs of many of
the results contained herein, and occasionally we will paraphrase the main
ideas or give sketches of the proofs.

Any mistakes contained herein are my own. I would like to thank Richard
Taylor for agreeing to supervise this minor thesis. I would also like to
thank Aaron Silberstein, Jack Huizenga, Jay Pottharst and Sam Isaacson
for numerous helpful conversations and advice.

2. SOME BASIC FACTS

First, some terminology: a global field is a number field or a function
field of an algebraic curve over a finite field. A local field is a field with a
nontrivial valuation with respect to which it is a locally compact topological
field, and whose residue field is finite. Let K be a local or global field,
and let L/K be a finite Galois extension. Recall that we have well-defined
notions Ox C Op, and that these rings are Dedekind domains. The norm
of a nonzero ideal a C Ok is defined to be [Og : a]. There is also a
norm map Ny : I, — Ik, the the groups of fractional ideals in Of,
and Og respectively, by N(P) = p/? if P lies over p, and then we extend
multiplicatively. Recall that fp is the residue index (sometimes called the
inertial degree of p in P.) If p is a prime in Ok then pOp = P{'--- PSm.
The e; are called ramification degrees. When (Or/P;)/(Ok/p) is a finite
extension of finite fields, its degree is defined to be f;. If [L : K] = n, then
n = Y e;f;. This last fact holds for any finite extension. In the case that
L/K is Galois, then the ramification and residue degrees are all equal.

Let L/K be a finite Galois extension, K a global field, and let v be
a nontrivial valuation on L, with L, the corresponding completion. The
Galois group G acts on the set of valuations on L by precomposition. If (x;)
is a Cauchy sequence for v and g € G then (g - ;) is a Cauchy sequence for
g-v =wvog '. By continuity, we get an isomorphism g, : L, — Lg.,. We
will write GG, for the stabilizer of a valuation v. Now let v be a valuation of
K. When it makes sense, L will denote the completion of L with respect to
any valuation lying over v (in the instances we consider, all such fields will
be canonically isomorphic,) and G" will be the corresponding local Galois

group.



CFT AND KNOTS 3

We will be making heavy use of many standard facts from algebraic num-
ber theory and homological algebra. We state some of them for reference.

2.1. Results from algebraic number theory.

Proposition 2.1 (Normal Basis Theorem). Let K/k be a finite Galois ex-
tension. Then K is a free k[G]-module.

Proof. This appears as an exercise in [3]. O

Recall the definition of the discriminant and the different of a finite sepa-
rable field extension: we have a nondegenerate bilinear form (x,y) = Tr(xy)
defined on L. It is surjective. If A is a Dedekind domain with fraction field
K and B is the integral closure of A in L, then B is a lattice in L. Let B*
be the set of all elements of y € L such that (y,x) € A for all z € B. This is
also a lattice in L and is a B-submodule of L. It is called the codifferent of
B over A. It is also the largest B-submodule of L whose trace is contained
in A. Since Tr(B) C A, we have B* D B. The codifferent is therefore a
fractional ideal of L. Its inverse is called the different Dp/4. This is an ideal
of B. The discriminant dg/4 is the norm of the different. If {e;} is a free
A-basis for B, then the discriminant is equal to

det(Tr(eie;)) = (det(a(e;)))?,

as o varies over embeddings of L into a fixed algebraic closure of K. The
proofs of the next two results can be found in [12].

Proposition 2.2 (Ramification criterion). Let A be a Dedekind domain
with field of fractions K. Suppose that L/K is a finite Galois extension,
and let B be the integral closure of A in L. Let P be a prime ideal of B
lying over p C A. L/K is ramified at P if and only if P divides the different
Dpya, if and only if p divides the discriminant dp 4.

Now let K be a local field with residue field k. Let k’/k be a finite
separable extension.

Proposition 2.3. There is a finite unramified extension K'/K that realizes
the first extension on residue fields. This extension is unique up to unique
isomorphism and is Galois if and only if k' [k is.

The existence part of the proposition follows essentially from the primitive
element theorem.

Corollary 2.4. There exists a unique mazximal unramified extension K,

of K.
It is obtained by applying the proposition to the separable closure of k.

Proposition 2.5 (Minkowski’s discriminant bound). Let K be a finite, non-
trivial extension of Q. Then |dg q| > 1. More precisely, if the degree of the
extension is n and 2t is the number of imaginary embeddings of K in C,

then
4
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2.2. Results from homological algebra. Throughout this exposition, we
will take the definition of group (co)-homology and basic constructions for
granted. Let H < G be a subgroup, and let A be a G-module. We can
view A as an H-module. Hence, the inclusion H — G induces a map
Res : H"(G,A) — H"™(H, A), called restriction. If H is a normal subgroup
of G then we get that A" is a G/H-module. Thus, we get a map Inf :
H™(G/H,A") — H"(G, A) called inflation. Now suppose [G : H] < co. Let
{si} be a set of coset representatives for G/H and let A be an H-module. If
a € A then we let N(a) = Y s;a (the norm of a.) This is invariant under
G action. We hence get a map Cor : H'(H, A) — H°(G,A). Tt extends
to a map on all cohomology groups (cf. [12].) For the definition of Ver,
we continue assuming that [G : H] < co. Ver gives us a map G% — H.
Explicitly, let 0 : G/H — G be a collection of right coset representatives.
Let x5 be defined by 0(t)s = x:s6(ts). Ver is obtained by looking at
s +— [, z+s and passing to the quotient. This definition comes from the
isomorphism G = [;/I2, H® = Iy /I%, and the norm map (acting as
Cor on Hy) Ig/13 — Ig/I1cIh.

Let H be a normal subgroup of G and let A be a G-module. There is an
exact sequence

0— H'(G/H,A™) — H'(G, A) — H'(H, A),

where the second map is inflation and the third is restriction. The exactness
can be verified by diagram chasing. More generally, if H*(H, A) = 0 through
dimension n — 1, then

0— H"(G/H,A") — H"(G,A) — H"(H, A)

is exact, with inflation and restriction maps in the same places. For a proof,
see [12], proposition VIIL.6.5.

There is a useful way to keep track of some homological and cohomological
data for a finite group in one sequence of cohomology groups, called the Tate
cohomology groups. In this subsection, G will always denote a finite group.

Define the norm N of G by deG g € Z|G]. By abuse of notation, we use
N to also denote the endomorphism of a G-module induced by multiplication
by N. It is clear that the augmentation submodule of A, I5A, lies in the
kernel of of N and that the image of N lies in A® for any G-module A. It
follows that N induces a map N* : Ho(G, A) — HO(G, A). Let Ho(G, A) =
ker(N*) and lLAIO(G7 A) = coker(N*). It can be showed that both of these
groups vanish for A relatively projective (equivalently relatively injective in
the case of a finite group.)

If0 - A— B — C — 0is a short exact sequence of G modules, we have
the standard long exact sequences on homology and cohomology. Multipli-
cation by N gives us maps from the 0-dimensional groups on homology to
the O-dimensional groups on cohomology. The snake lemma gives us a new
exact sequence that connects the dimension 1 and higher groups in homology
and cohomology by:

Hy(G, A) — Hy(G, B) — Hy(G,C) — H°(G, A) — H(G,B) — H°(G,C).
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This motivates the definition of Tate cohomology groups, {ﬁ "(G,A),n €
Z}. They coincide with H"(G, A) when n > 0, H_,,_1(G, A) when —n > 1,
coker(N*) when n = 0 and ker(N*) when n = —1.

The restriction and corestriction maps all work as before, and if [G : H] =
n, then Cor o Res = n as with usual group cohomology. There also exists a
uniquely defined cup product

H?(G, A) ® HY(G, B) — H"*(G,A® B).
These satisfy certain naturality properties. In particular they are natural
transformations and bifunctorial in A and B. We will only mention other
properties of the cup product when we require them.
In order to do class field theory in the arithmetic case, we will need to

know how to actually compute certain cup products. The following lemmas
are all taken from [12], appendix after chapter 11.

Lemma 2.6. Let A and B be G-modules, « € A%, and f : Z — A a G-
homomorphism taking 1 — «. Suppose x € ff”(G, B). Then, viewing o as
an element of ﬁO(G,A), the cup product of a and x is equal to the image
of x under

f®l:B=7Z®B— A® B.

Lemma 2.7. Let a« € A with Na = 0, and let f be a 1-cocycle G — B,
which we identify in notation with its cohomology class. Then, viewing «
as an element of f[‘l(G, A), the cup product of o and f is given by the
cohomology class of

c=—> ta® f(t).
teG

The augmentation homomorphism gives a short exact sequence
0—Ig—Z|G)—Z— 0.

If g € G, we may consider g — 1, viewed as an element of ﬁ_l(G, Ig). The

map d : g — g — 1 gives us a canonical isomorphism G ﬁI_Q(G, 7).
Lemma 2.8. Identify a 1-cocycle f of G in B and an element g of G with
their classes in HY(G, B) and H=2(G,Z). Then, their cup product is given
by the cohomology class of f(s) in H-*(G, B).

Lemma 2.9. Let u be a 2-cocycle of G in B, identified with its cohomology
class. For all g € G, we have that the cup product of u and s is given by

> u(t,s) € H'(G,B).
teG

The proofs of all these lemmas go along the following lines: choose an
exact sequence of G-modules

0—-B—B —-B">0

with B” induced. Using the fact that induced modules are cohomologically
trivial, we can express one of the relevant factors in the cup product as
a coboundary. Applying lemma 2.6 and the definition of the coboundary
operator gives the results.
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In particular, to do local class field theory, we will need the following
result of Nakayama-Tate:

Theorem 2.10. Let G be a finite group, A a G-module, and o a 2-cohomology
class. Let G be a Sylow p-subgroup of G, and suppose that Hl(Gp, A)=0
and H?(G,, A) is generated by Resqq, () and has the same order as Gp.
Then for any G-module B with Tor(A, B) = 0, the cup product with a4, the
image of a under the restriction map, induces an isomorphism

H"“(H,B) — H""?(H, A ® B)
for all n and all H < G.
Proof. [12], IX.8.14. O
When B above is just Z, we get

Corollary 2.11. The cup product with ay gives an isomorphism offI”(H, Z)
and H""2(H, A).

2.2.1. Cohomology of cyclic groups. Consider G = (s). In addition to the
previously defined N, let D = s — 1. We can compute the cohomology of
cyclic groups very easily and explicitly. Let {C?} be the complex that is
Z|G] in each dimension, and the boundary maps C* — C**! are given by
multiplication by D and N when ¢ is even and odd respectively. Denote by
C(A) the complex {C"} @z/q] A. An exact sequence of G-modules gives rise
to an exact sequence of complexes in a way that preserves the direction of
the arrows.

Proposition 2.12. The cohomology functor H1(G, A) is isomorphic to the
cohomology functor of the complex C'(A).

Proof. [12], VIIL.4.6. O

In particular, the cohomology of C(A) is independent of the choice of
generator s.

Corollary 2.13. Let G be a cyclic group. Then HY(G, A) = ker(D)/Im(N)
if q is even, and ker(N)/Im(D) if q is odd.

For the study of class field theory, we will need the notion of a Herbrand
quotient. If G is a finite cyclic group, then the previous corollary tells us that
the cohomology of G is periodic with period 2. Suppose that both H(G, A)
and H'(G,A) have finite order. Then the Herbrand quotient h(G, A) is
defined as |H(G, A)|/|H (G, A)|.

The Herbrand quotient has several nice properties. Let

0—-A—-B—-C—=0

be an exact sequence of G-modules. Then the Herbrand quotient is multi-
plicative. That is, h(G,B) = h(G,A)h(G, B). If Z is a trivial G-module,
then h(G,Z) = |G|. Also, whenever A is a finite G-module, h(A) = 1.
Indeed, we have the exact sequence

0-A% 5 A—A— Az — 0,
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where the map A — A is given by multiplication by D. This sequence shows
that A and Ag have the same number of elements. We also have the exact
sequence

0— HY(A) —» Ag — A% — H°(4) — 0,
where the map Ag — A% is multiplication by N. This is seen by modifying
the grading on the complex used to compute cohomology of cyclic groups
(cf. [12], 8.4.) This establishes the claim.

The Herbrand quotient is much like the Fuler characteristic. Recall that
in any abelian category with have the notion of the Grothendieck group
that constructs a universal abelian group K (D) out of any commutative
monoid D. Consider the category AbGrp of abelian groups and let A run
through all G-modules in AbGrp. If we consider the subcategory FinAbGrp
of finite abelian groups, and we suppose that H°(G, A) and H'(G, A) be-
long to FinAbGrp, then we can set h(G,A) = H°(G,A) — HY(G,A) €
K (FinAbGrp). We need to be careful to use isomorphism classes of abelian
and finite abelian groups to make sure that these constructions make sense.
Indeed, for any n € N, there are only finitely many isomorphism classes of
abelian groups of order n, so that the isomorphism classes of finite abelian
groups forms a set. Therefore, we get an honest commutative monoid when
we consider isomorphism classes of finite abelian groups under direct sums.

2.3. Ramification theory and the Artin representation. In this sub-
section, K will denote a field that is complete with respect to a discrete val-
uation v. O will be used to denote the valuation ring, and Ux = Og — Pk
will denote the invertible elements. If L/K is a finite separable extension,
Or, D Og is the integral closure of Ok in L. Oy, is also a discrete valuation
ring, and we have w a valuation on L lying over v. We will assume the exten-
sion of residue fields to be separable. We will generally assume the extension
to be Galois with group GG. Under these assumptions, Oy, is generated by a
single element = as an Og-algebra (cf. [12], proposition I11.6.12.)

Let g € G. It is obvious that g acts trivially on Or/ Pi“ if and only if
w(g-a—a) > i+1foralla € Oy if and only if w(g-z—z) > i+1. Let G; denote
the normal subgroup of G that consists of elements that act this way. It is
called the i** ramification group. Let ig(g) = w(g-x—2). Then ig is a class
function, ig(g) > i+ 1 if and only if g € G;, and ig(gh) > inf(ig(g),ic(h)).
Furthermore, for any subgroup H, we can consider the fixed field F = L.
It follows that for all g € H, ig(g9) = ig(g), and that H; = H N G;.

We will see later that the largest unramified subextention K, of L is the
fixed subfield of the inertia group. It follows that the ramification subgroups
of G are equal to those of of its inertia group. Thus, it makes sense to talk
about the totally ramified extension L/K,.

We will suppose now that H is a normal subgroup of G, so that we can

talk about G/H = Gal(F/K).

Proposition 2.14. Let 7 : G — G/H be the canonical projection, and let
e denote the ramification index of Pr, when L is viewed as an extension of
LY. Then,

o) =1 O ialy)

m(g)="
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Proof. [12], proposition IV.1.3. O
Now let 7w denote a uniformizing element for L.

Lemma 2.15. Let i > 0. An element g € Gy, the inertia group of G,
belongs to G; if and only if g - w/m =1 (mod P}).

Proof. Clearly we can consider only the totally ramified case. It turns out
that then 7 generates Ay, as an Ak algebra (cf. [12],1.6.18.) Since w(w) = 1,
it follows that ig(g9) =1 +w(g - 7/m —1). O

Now consider Uy, C Oy,. We write Ug = Uy, and U}J = 1+P}J. It turns out
that these are closed subgroups of Uy, which form a base of neighborhoods
of 1 in the topology induced by L*. Uy is closed, so we may write Uy =

lim Uy, /U}.

Proposition 2.16. Uy /U} = L" and fori > 1, Ui /UL = Pl /Pit! The
latter quotients are noncanonically isomorphic to the additive group L.

Proof. The first two statements are obvious. The third follows since P} / Pt
is a one-dimensional vector space over L. O

We can describe the quotients Ut /Uit more canonically: let V = Pp,/ P2,
and consider V' := V% the i*" tensor algebra. There is a canonical map
Vi Pi/Pz+1 taking v1 ® - -+ ® v; +— vy ---v;. This is obviously a nonzero
map of L-vector spaces and is a bijection since P,/ PE is 1-dimensional.

We can easily characterize the successive quotients G;/Gj+1: they are
isomorphic to Ui / UEH via g — ¢ - 7/m. In particular the inertia group
is solvable. Furthermore, the isomorphism is independent of the choice of
uniformizing parameter. Denote this isomorphism by 6;.

Notice that since G; is normal in G, Gy acts on G;/G;+1 by conjugation.
The proof of the following statement is not difficult:

Proposition 2.17. Ifg € Gy and h € G;/G;1, then 0(ghg™t) = 0(g)'0;(h).

We will now define a function that will be important in the study of
class field theory and describe some of its properties. Let > —1 be a real
number. By G, we mean G;, where 4 is the smallest integer greater than x.
It is clear that g € G if and only if ig(g) > = + 1. Define ¢(x) by

T gt
90(96)—/0 Go il

We will call ¢ is Herbrand function associated to a field extension. When
—1 <t <0, then [Go,Gy] = [G_1 : Go]™!. In particular, if g; = |G;| and
k<z<k+1, we have

k
(1) = (3" i+ (@ — K)gin).
90 =

Note that ¢ is continuous, piecewise linear, increasing, concave and satis-
fies p(0) = 0. Furthermore, if ¢; and ¢, denote the left and right derivatives
of ¢, then if x is not an integer these are both equal to 1/[Gy : G,]. Oth-
erwise, they are 1/[Gy : G| and 1/[Go : Gz41] respectively. ¢ is easily seen
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to be a homeomorphism of [1,00) to itself. An interesting property of ¢ is
the following:

Theorem 2.18 (Hasse-Arf). Let G be an abelian group. If G; # Gi+1 then
(i) is an integer.

Proof. [12], V.T7. O

Let ¢ denote the inverse of ¢. Then % is continuous, piecewise linear,
increasing, convex and satisfies ¢)(0) = 0. The inverse function theorem
shows that the derivatives of ¢ are inverses of those of ¢. If we write
GY = G¢(y), then

bly) = /O "6 ¢ at.

If H is a normal subgroup of G, it follows that (G/H)Y = GYH/H. Let
K C F = L". The fundamental property of ¢ and 1 that will allow us to
justify this claim is the following:

Proposition 2.19 ([12], proposition IV.3.15). @1,k = @p/k © YL/ and
Yk =YrroYr/K-
The proof of this proposition follows from several lemmas, all of which

can be found in [12], IV.3. None of the proofs are difficult. Notice that the
properties of ¢ and ¥ mentioned above characterize them. It follows that:

Lemma 2.20.

I —. ..
oryx(@) = —> inf(iglg),z+1) — 1.
go e

Now let 7 : G — G//H be the canonical projection. Let b(g) = sup,cr-1(y) ic().

Lemma 2.21. ig,y(9) — 1= ¢r/k(b(g) — 1).

Lemma 2.22 (Herbrand’s theorem). Let y = ¢ /p(v). Then G.H/H =
(G/H)y.

Indeed, g € G, H/H if and only if b(g) — 1 > = if and only if ¢ /p(b(g) —
1) > ¢r k() ifand only ifig,(9) —1 > ¢ /p(v) if and only if g € (G/H),.

Let ep/i and e, p be the corresponding ramification indices of the tower
K Cc F C L. To see why proposition 2.19 holds, note that if z > —1 is
not an integer, then the derivative of pp/r o ¢, can be computed via the
chain rule, giving us

(\(G/H)y|/€F/K)(|Hz\/eL/F),

where y = ¢ /i (x). It follows from Herbrand’s theorem that this is just
|Gel/er k= <p’L/K (x), giving us the transitivity formula for ¢ and . Com-
bining proposition 2.19 and Herbrand’s theorem justifies the claim.

Now, let f = [L : K] be the residue degree. Let ag(g) = —f-ig(g) for g #
Land f 3, ic(g) for g = 1. From the definition of ig, it follows that ac
is a class function. Since ) e ag(g) = 0, it follows that the inner product
(ag, 1¢) vanishes. In fact, if x is any character on G, (¢, ag) is a nonnegative
integer. That is, ag is a character of an irreducible representation of G,
called the Artin representation.



10 T. KOBERDA

Proposition 2.23. The character ag is induced as a function by ag,.

This follows easily from the definitions of induction and ig. For a char-
acter y of G, we write f(x) = (ag,X). The prime ideal PIJ;(X) is called the
conductor of xy. When y has degree one, corresponding to a cyclic extension
of K, then the conductor of y is the conductor of the extension.

Recall that if G is any group, we can consider R¢, the regular representa-
tion. The trivial representation occurs with multiplicity one, and we call the
representation Rg — 1g the augmentation representation, denoted Ug. we
write ug for its character. We will write u; for ug, and u; for the induced
characters of G.

Proposition 2.24.

o0 1 .
Proof. [12], proposition VI.2.2. O

3. THE PERSPECTIVE OF CURVES

Let X be an algebraic curve over a field k. That is, X is given by a field
K of transcendence degree 1 over the base field k. We will generally assume
in this section that all curves are nonsingular. Many of the results generalize
to the case of singular curves, but we will not give indications as to how this
is achieved.

3.1. Jacobians and their generalizations. Let X be a projective, non-
singular curve over C for the moment. Then X is diffeomorphic to a Riemann
surface of some genus g. Let {wi,...,w,} be a basis for Q!(X), the space
of holomorphic differentials on X and let p € X be a fixed point. Since
holomorphic 1-forms are closed, they have well-defined integrals about ho-
mology classes in Hy(X,Z). Recall that a functional A : Q'(X) — C is
called a period if it is given by:

w— [ w
[c]

for some homology class [c]. Let A denote the subgroup of periods in Q! (X)*,
and recall that the Jacobian of X is defined by:
B Ql ( X)*
==

We thus have a canonical map (often called the Abel-Jacobi map in the
case of complex curves) X — J(X) given as follows: for ¢ € X, choose a
path v, : I — X with 74(0) = p and 74(1) = q. We then define the canonical

map f by:
qH(/ wl,...,/ wy) (mod A).
Ya Ya

If X is a complete non-singular curve of genus g > 0 over an arbitrary
field &, we need to define the Jacobian differently, since integration ceases to
make sense. The constructions below will allow us to make precise analogies
between class field theory for algebraic curves and global class field theory.

J(X)
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The Jacobian (or more generally, the Albanese variety,) is characterized by
its universal property:

Proposition 3.1. Let X be a smooth projective variety. There exists an
abelian variety Alb(X) called the Albanese variety of X and a map o : X —
Alb(X) with the following universal property: if T is a complex torus and
f: X — T is a morphism, then there is a unique map F : Alb(X) — T such
that f = F o a.

Proof. We take the proof given in [1], theorem V.13. The proof is done
over C, but the result generalizes to other fields. The construction of the
Albanese variety exactly parallels that of the Jacobian of a curve.

From Hodge theory we get a map i : Hy(X,Z) — (H°(X,Q%))* defined
by (i(7),w) = fv w, whose image is a lattice by which the quotient is an
abelian variety. Let A = Alb(X) be the quotient. For ease of notation we
write the image of i as H, and H(X, Q) = Q.

Now let p € X be a fixed point. For each z € X we can choose a path c,
from p to x. It is obvious that the form w — ch w is a well-defined element
of A. Call it a(x). .

It is easy to see that « is analytic in the neighborhood of a point ¢ € X.
Indeed, let ¢ be a path from p to g and let U be a neighborhood of ¢ that
is isomorphic to a ball B C C". We can identify U and B. For each x € U,
we write a(z) = a(c;), where ¢, is the concatenation of the fixed path from
p to ¢ with the segment connecting ¢ and x. The map « : U — Q*/H is
evidently analytic.

Now, there is a canonical isomorphism § : Q& — HY(A4,QL). This is a
general fact about complex tori, which we will explain. If V/I" is a complex
torus, then the tangent and cotangent spaces at the origin are canonically
identified with V' and V* respectively (similarly for tangent and cotangent
sheaves.) The explicit isomorphism V* — H O(V/F,Q%//F) is given thus:
x € V* defines a function that satisfies z(v++) = x(v) +C for C a constant,
~v € I and for all v € V. Thus, the differential dz will be a global 1-form.
This isomorphism is denoted J.

We will now show that « induces an isomorphism o* : HY(4,Q}) —
HY(X,Q%). Tt clearly suffices to show that a*(dw) = w for w € Q. This
can be seen by computing o* locally, noting that if y(z) is a local family of
paths from p to x, then

d({w,7(x))) = d / w) = w(z).

~

Now let T" be any complex torus and let f : X — T be any mor-
phism. Suppose that F' exists, as in the statement of the proposition.
Then, F* : HY(T, QL) — H°(A, Q) is the induced map. F* is determined
uniquely since «* is an isomorphism. It follows that F' is determined up to
a translation. Since we fixed a basepoint, we have uniqueness.

To prove the existence of F', we must use the following fact about complex
tori: Let u : 71 — T» be any morphism between complex tori 73 = V1/T;
and Tp = V5/T'9. Then u is composed of a translation and a group homo-
morphism. The group homomorphism, on the other hand, is induced by a
linear map ¢ : Vi — V3 satisfying ¢(I'1) C Ts.
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To justify this fact, we note that v induces a map U on the universal
covers such that U(z 4+ ) — U(z) € 'y for all v € 'y and all z € V4. In
particular, the partial derivatives of U are invariant under translation be
elements of I'y, so they define holomorphic, i.e. constant, functions on 7.
It follows that U is affine.

Returning to the proof, let 7' = V/T". It clearly suffices to show that
u, the composite of § (for V') and f*, viewed as a map V* — Q satisfies
tw(H) CT.

("u(i(y)),v") = (i(7), u(v")) = /f*(5v*) = [ v
v Fey
Now let h : ' — H;(T,Z) be the canonical isomorphism. Then

v* = (W1 (fum),v"),
fxy

completing the proof. O

It is possible to use the machinery of complex geometry to prove that
the Jacobian of a curve is its Albanese variety (cf. [1], chapter V.) When
the base field is not C, one can construct an algebraic group with the same
universal property and call it the Jacobian.

Let S be a finite subset of X. To each element P of S we associate a
positive integer np. We call this data a modulus m of the curve X. When
we study the class field theory of a number field, we will have an analogous
notion. The modulus can be viewed as a divisor > ¢np - P. Let f be a
rational function of X satisfying f =1 (mod m), and let F': X — G be a
morphism, where G is an algebraic group. If (f) is the divisor of f, then we
can make sense of F'((f)) by defining the image of a divisor of a point to be
its image under F', and then extending by linearity. We will suppose now
that F' is defined outside of S. We then define F'((f)) by

Y wp(HEF(P).
PeX-S
We say that m is the modulus of the map F if F((f)) = 0 for all rational
functions f satisfying f =1 (mod m).

Proposition 3.2 ([11], theorem 1.1.1). For any rational map F : X — G,
that is reqular outside a finite set S, F' has a modulus supported on S.

Proposition 3.3 ([11], theorem 1.1.2). For any modulus m, there is a com-
mutative algebraic group J,, and a rational map Fy, : X — Jp, with the
following universal property: for any rational map F : X — G that admits
m as a modulus, there is a unique affine homomorphism 0y, : J,, — G such
that ' = 0,, o F,,.

Given this setup, the Jacobian will be defined much like the idele class
group for a number field. It can also be defined through purely geometric
methods. To see how the ideal-theoretic definition is reconciled with the
analytic definition, we can give a description of the case of elliptic curves.

Let L C C be a subfield. Let f(z) = 2® + a2z? + bx + ¢ € L[x] be a
separable polynomial. Let g(z,y) = y?—f(x), and let E(L) be the subvariety
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of P?(L) defined by g after homogenizing. Let L(E) be the corresponding
function field. E(L) can be viewed as a union of finite points and a point
at infinity. There is a bijection between points in F(L) and degree one
valuations of L(E). A point should be thought of as giving rise to a valuation
by associating to a function its order of vanishing at the point. The reverse
correspondence is less obvious. Given a degree one valuation v of L(E),
let w be the valuation on L(X) lying below v. The theory of valuations
on L(X) (cf. [3]) shows that w can be canonically associated a polynomial
(x —p) € L[z]. It follows that v is nonnegative on L[x]. Writing X = x; +p,
we have
y? = f(X) = f(z1+p) = f(p) + h(z1)

with h € x - L[z]. Combining these observations shows that 4% — f(p) € P,
the associated prime ideal. y% € O,, and so y — g € P, for some q € L, so
that ¢> — f(p) € P,. We let v — (p, q) be the reverse correspondence. It is
in fact well-defined.

Let Div(L(E)) denote the free abelian group on valuations of L(FE).
Hence, Div(E(L)) = Ip @ Zvs, where Ig is the group of fractional ideals
(note that we are considering the integral closure of L[x] inside L(FE).) If ¢
is the canonical map L(E)* — Div(L(E)), then we form the class group Cg
as the quotient.

Let f : E(L) — Cg be given by p — v, — voo. Then f is injective
(cf. [3], theorem 55) and the image is closed under the group law on Cg.
By the universal property of the Jacobian, we have that f is induced as a
composition of the canonical map of E(L) into its Jacobian followed by a
map F' from the Jacobian to C'g. Since f is injective, F' must be injective.
Since f is regular, it follows that f(E(L)) is isomorphic to the Jacobian
of E(L). Notice that the image consists precisely of degree zero classes of
divisors. This will motivate the general definition of the Jacobian.

The Jacobian can be defined geometrically using symmetric powers. This
approach gives a functorial viewpoint. Let Y = X9 denote the g-fold sym-
metric product of X with itself. It exists. If X is flat over a scheme S then
(X/S)9 is also flat over S, and the construction is compatible with base
changes. If X/k is a smooth curve then X9 is also smooth (cf. [13].) One
can define a rational map Y x Y — Y that is a composition law, making Y
into a “bi-rational group.” One could then use the following general result:

Lemma 3.4. For any bi-rational group Y defined over a field k, there ex-
ists a unique algebraic group G defined over an extension K/k that is K-
birationally isomorphic to Y.

Proof. [16], V.15. O

For more exposition on this approach, see [5], for example.

It is possible to define this group structure in a more functorial manner,
and we will choose this approach. Let X/S be a scheme over S. A closed
subscheme D is called a relative effective Cartier divisor of X if D is flat
over S and its ideal sheaf is an invertible Ox-module. The contravariant
functor Divg(/s : (Sch/S) — (Sets) is given by

T — {relative effective Cartier divisors of degree g of X7 /T'},
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where X7/T = (X/S) xg T. This functor is also compatible with base
changes.

Proposition 3.5. If X is a smooth curve, then X9 & Divg{/s.

Proof. [13], theorem 4.1. O

Now, let C},, be the group of divisors not supported on .S modulo principal
ones given by (f) with f = 1 (mod m). Let CY, be the subgroup of C,,
consisting of degree 0 classes. If C? is the group of classes of degree 0, there
is a natural surjective homomorphism CY — C°. The kernel L,, of this map
consists of principal divisors (f) such that f is invertible at all points of S.
For every P; € S we can look at invertible elements modulo those congruent
to 1 (mod m). These form a commutative algebraic group R, ;. Let R,,
be the product of these. If G™ denotes the multiplicative group of the field,
then L, = R,,/G™. Writing J = C°, we obtain

0— R,/G™ — C° — J—0.

We write C9, = J,, and call this the generalized Jacobian. Notice that in
spirit, this is the same object as we constructed for elliptic curves.

If G,G are connected, commutative algebraic groups and 6 : G/ — G is
surjective with finite kernel, we say that 6 is an isogeny. If the corresponding
field extension is separable, we call 8 separable. Let I' be the kernel of 6.
Then G 2 G'/T.

Let f: U — G be a regular map, with U an algebraic variety. Let U’ be
the preimage of G’ under f, that is to say the fibered product U x5 G’. The
projection U’ — U is an unramified cover with Galois group TI'.

Proposition 3.6 ([11], theorem 4). Every abelian cover of an irreducible
algebraic variety is the preimage of an isogeny.

The idea of the proof is to reduce the problem to Kummer theory and
Artin-Schreier theory to write the isogeny as a composition of maps of the
form x — 2™ and = — aP — x.

3.2. Class field theory. The results above allow us to derive class field
theory for function fields. We will forego the explicit description of reci-
procity maps for the sake of brevity. A survey of the results in geometric
class field theory can be found in [6].

Let K be a number field and X a complete nonsingular curve defined over
K.

Proposition 3.7. Let © € X be a K-rational point. There is a maximal
abelian unramified covering ™ : X' — X that is defined over K such that the
preimage of x consists of deg(X'/X) distinct K -rational points.

In particular this cover is finite.

Proposition 3.8. The mazimal abelian unramified cover of K(X) is given
by the composite of the mazimal abelian extension K® of K and the cover
asserted above.

By the previous subsection, abelian covers of X correspond to covers of
the Jacobian.
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Lemma 3.9. Let 0 : G’ — G be a separable isogeny, defined over K. Then,
the following three conditions are equivalent:

(1) The extension K(G')/K(G) defined by 0 is Galois.
(2) The extension K(G')/K(G) defined by 0 is abelian.
(3) The kernel of 6 is contained in the K-points of G'.

When these conditions are satisfied, the Galois group of the extension is
given by the group of translations x — x 4+ a as a varies over elements of
the kernel.

Proof. [11], proposition VI.6.6. O

If J/ — J is a cover of the Jacobian of a curve X satisfying the conditions
of the lemma, we can describe kernels of isogenies via certain subgroups of J.
Let € J have order n, and suppose it is rational over some finite extension
of K. Consider G = Gal(K/K). Suppose that the subgroup generated by
x is G-isomorphic to ju,, the group of n roots of unity. Then, we say that
x is a p-point. x is then rational over K (uy,). A subgroup of J is a u-group
if all of its points are p-points. It turns out that u-subgroups of J are in
bijective correspondence with finite K-rational subgroups of coverings of J.

Proposition 3.10 ([6], theorem 5.3). The maximal p-subgroup is finite.

This result is equivalent to the finiteness of the geometric cover mentioned
in proposition 3.7.

3.3. The Artin representation and algebraic curves. We follow [12],
VI.4. Let k be an algebraically closed field of characteristic p, Y a projective,
non-singular, connected algebraic curve over k, and let G be a finite group
of automorphisms of Y. Let n(Y) = X = Y/G, let L = k(Y) and let
K = k(X). L/K is a Galois extension with Galois group G. Points on the
curves correspond to local rings that are discrete valuation rings, and hence
can have valuations assigned canonically. The elements of G that fix a point
P form the decomposition group Dp. Let t be a uniformizing parameter at
P. For 1 # g € Dp, we write

ir(g) =vp(g-t—1).

It is not difficult to see that ip(g) is in fact the multiplicity of P x P in
'y, N A, the intersection of the diagonal and the graph of g.

We define ap as before. Extending it by zero outside of the decomposition
group of P, and fixing @ € X, we write

aQ = Z ap.

m(P)=Q

It is true that if P lies above @, then ag is induced by ap, and that aq is
the character of a representation of G. We call this representation the Artin
representation of G at Q.

It is also possible to interpret the Artin representation as a generalization
of the Hurwitz formula using ¢-adic cohomology, but we shall not do this.
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4. THE PERSPECTIVE OF ARITHMETIC

4.1. Galois cohomology. Let K/k be a finite Galois extension with Galois
group G. We get a canonical G-module structure on the additive group
K and on the multiplicative group K*. It will often be possible to give
G-module structures to (possibly nonabelian) groups that are canonically
associated to K. The first result in Galois cohomology is the following:

Proposition 4.1. For all integers n, ﬁ”(G, K)=0.

The proof of this statement just follows from the normal basis theorem.
Proposition 4.2. HY(G,K*) = 0.
Proof. [12], X.1.2. O

Corollary 4.3 (Hilbert’s Theorem 90). If G = (s) is a cyclic group and
x € K* with norm 1, then there exists a y € K* satisfying x = y/s(y).

The proof of this statement follows immediately from the determination
of the cohomology of a cyclic group along with the cocycle condition.
Similar arguments using noncommutative cohomology show that

HY(G, GL.(K)) = H'(G, SLy(K)) = {1}.

We will see later that these statements are just generalizations of Hilbert’s
Theorem 90.

4.1.1. Cohomology of profinite groups. This section is taken essentially from
[12], X.3. Let K/k be a Galois extension. G is topologized by taking finite
index subgroups to be a base of neighborhoods of the identity. G is thus a
profinite group and is equal to @GQZ(L /k), where L varies over all finite
subextensions of k in K. If A is a G-module, we call it a topological G-
module if A = UAH as H varies over all open normal subgroups of G.
Equivalently, for all a € A, {g|g - @ = a} is an open subgroup of G. We
may therefore make sense of the expression H"(G/H, A) for any n. The
inflation homomorphisms allow us to then define

H™G, A) =lim H*(G/H, A").

We will perform some calculations below for Z, the profinite completion
of Z. Note that the Chinese remainder theorem shows that Z = Hp Ly, as
p ranges over all prime numbers.

4.1.2. Artin-Schreier and Kummer theory. First, let k be a field of charac-
teristic p. Consider the isogeny x +— xP — x. We obtain the following short
exact sequence:

0—F,—=k—Fk—0.
Let K/k be a finite abelian extension. We obtain the same exact sequence
as above with K replacing k. Applying Galois cohomology with coefficients
in K we get

0—TF, —k—k— Hom(G,F,) — H(G,K) = 0.

It follows that any continuous homomorphism G' — F), is given by g - a — a,
where a comes from solving the equation 2?7 — z — b = 0. This tells us
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that a finite Z/pZ-extension K is of the form k[z]/(2P — x — b) for some
b € k. Indeed, we see that the minimal polynomial of a over k is given by
(r—a)(z—a—-1)---(z—a—p+1).

Now suppose k has characteristic zero and contains the n‘" roots of unity,
K a finite abelian extension of k. As before, we get an exact sequence

0— pp — K*— K*— 0,

where the third map is given by raising to the n** power. Applying Ga-
lois cohomology and Hilbert’s Theorem 90, it follows that every element of
Hom(G, py,) is of the form ¢ - a/a, where a comes from solving 2" — b = 0.
This again tells us that finite abelian extensions are given by finite composita
of extensions given by adjoining n'" roots of elements (n can vary.)

There is an interesting application of Kummer theory to the theory of
algebraic curves. Since C contains all roots of unity, it follows that any
abelian cover of a Riemann surface X is given by a compositum of branched
cyclic covers.

4.1.3. Descent. We summarize a general method that is used to understand
when certain objects defined over a field k become isomorphic in a suitable
sense when the field is extended to a larger field K. Let V/k be a vector
space, and let x be a (p,q)-tensor. We say that (V,z) = (V/,2') (that is,
k-isomorphic,) if there exists a k-linear map f : V — V' sending = to 2/. We
extend scalars on V' by taking Vg = V @i K. Now, let (V,z) be fixed. Let
E(K/k) be the set of k-isomorphism classes of pairs that are K-isomorphic
to (V,z). Let Ax denote the group of K-automorphisms of (Vi,zx). Ax
has a noncommutative G-module structure as follows: we have an action
on Vg by g- (v®A) = v® g(A). Then, if f is a K-linear map, we write
g-f=gofog"
Now, if (V',2') € E(K/k) and f witnesses this fact, then

pg=flog-f

is an element of Ax and in fact represents a 1-cocycle. Changing f changes
pg by a coboundary, so that we obtain a map

0: E(K/k) — HY(G, A).
Proposition 4.4. The map 6 above is a bijection.

Proof. [12], X.2.4. O

Descent will allow us to reconcile two definitions of the Brauer group
below. It also gives a quick proof of Hilbert’s Theorem 90, using the fact
that there is only one vector space of dimension n over a field k, up to
k-linear isomorphism.

4.1.4. Brauer groups. Let K/k be a Galois extension with Gal(K/k) = G.
By abuse of notation we will write H4(K/k) for H1(G, K*).

Lemma 4.5. The group HY(K/k) depends functorially on K/k.

Proof. Let k' be an extention of k and K'/k’ a Galois extension with group
G’. Suppose furthermore that there is a k-linear map f from K into K.
We will then get a natural map f* : HY(K/k) — HI(K'/K') as follows:
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let ¢ € G'. By Galois theory there is a unique element g € G satisfying
fog=g of. Thus, we get a natural homomorphism G’ — G, whence the
result. O

This map is in fact independent of the choice of f. Indeed, if we choose
another such f, then we induce a map on HY given by an inner automor-
phism. These act by the identity. In particular, if k = &’ and K = K’, there
is a canonical isomorphism HY(K/k) — HI(K'/k'). If K is the separable
closure of k, we have a well defined notion of H?(Kep, k). In the case ¢ = 2,
we write H?(k) and call this the Brauer group of k.

Recall that the Brauer group of k is classically defined to classify central
simple algebras over k. One of the many equivalent definitions of a central
simple algebra is that it be isomorphic to a matrix algebra over a division
algebra whose center is k. Two such algebras are said to be equivalent if the
associated division algebras are k-isomorphic. An equivalent definition of a
central simple algebra over k is that there is a finite Galois extension K /k
such that By is isomorphic to a matrix algebra over K.

Elements of the Brauer group are equivalence classes of central simple
algebras over k. There is a group structure on this set, given by the tensor
product. It is easy to see that the tensor product of two central simple
algebras over k is again a central simple algebra over k, and also that the
product is well defined on equivalence classes.

Let By denote this group for a field k. If K/k is an extension, we get
a map By — By, and let B(K/k) denote the kernel. It follows from the
definition of equivalence that By, is the union of the B(K/k) as K ranges
through finite Galois extensions of k. It suffices to construct isomorphisms
B(K/k) — H?*(K/k) that are compatible with the maps induced by the
inclusions K — K'.

Applying descent (where the tensor is of the form (1,2) that expresses the
law of composition,) we obtain that there is a canonical bijection between
B(K/k) and H'(G, PGL,(K)), using the fact that every automorphism of
the algebra M, (K) is inner. From the exact sequence

1— K*— GL,(K) — PGL,(K) — 1

we can extend the exact sequence for nonabelian cohomology to the H? term.
In particular, if 1 — A — B +— C +— 1 is an exact sequence of nonabelian
G-modules, we get an exact sequence of pointed sets as in the long exact
sequence for cohomology through the term H'(G,C). If A is contained in
the center of B, we get a map A : HY(G,C) — H?(G, A) that extends the
exact sequence. The proof that then B(K/k) =2 H?(K/k) follows easily from
the facts above and can be found in X.5.9 in [12].
We will obtain specific examples of nontrivial Brauer groups below.

4.2. Local class field theory. The goal of this subsection is to understand
the work that goes into the following result:

Theorem 4.6 (Local class field theory). Let K be a local field. Then there

is a canonical isomorphism f : K* — Gal(K®/K), where K* denotes the
completion of K* with respect to the norm topology.
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4.2.1. Brauer groups of local fields.

Lemma 4.7. Let K be a local field. Then H?(K,,) = 0, where K, denotes
the unique (up to isomorphism) maximal unramified extension of K.

Proof. [12], X.7. O
Corollary 4.8. The Brauer group of K may be identified with H*(K,, /K).

Lemma 4.9. Let L/K be a finite unramified extension and suppose that
G = Gal(L/K). There is a split exact sequence

0— HY(L/K)— HYL/K)— HY(G,Z) — 0
for any g > 1.
Proof. [12], XI1.3.4. O

By taking limits, we obtain
0— HYK)— HY(K,./K) — HY(G,Z) — 0.
Specializing to the case where ¢ = 2, we get that the first two groups are
Brauer groups. We compute some of the cohomology of G now: note that
we have the following exact sequence:

0-Z—-Q—Q/Z —0.

We have that Q is cohomologically trivial, so that we have Hom(G, Q/Z) =
H?(G,7). Hom(G,Q/Z) is often called X (G), the character group of G' and
is the Pontryagin dual of G (we take the homomorphisms to be continu-
ous.) In the case G = Z, X(G) is identified with Q/Z. It follows that the
Brauer group of a local field is isomorphic to Q/Z.

4.2.2. Proving local class field theory. The basic strategy for establishing the
isomorphism K* 2 Gal (K% /K) is roughly as follows: we use the theorem
of Nakayama-Tate to establish a reciprocity isomorphism between Galois
groups of finite abelian extensions and norm subgroups of Galois modules.
Passing to the limit, we get the desired result. In this subsection we will
tacitly assume all field extensions to be abelian.

If H < GG is a subgroup of finite index and A is any G module, then we can
define the norm homomorphism as follows, as is done for the corestriction
homomorphism in group cohomology. Indeed, let s; denote a set of coset
representatives for G/H. Then we let

Ng/u(a) = Zsi - a.

In general this is not well-defined, but it is easy to check that this is well-
defined as a map from A® — A", For our purposes, A will be a topological
G-module for for some Galois group G of some very large extension of a
field K. Let K C F' C L be a sequence finite Galois extensions with groups
G > Gr. We denote the corresponding norm homomorphism by Ny p. A
subgroup of Ar = A%F is called a norm subgroup if it is the image of a norm
homomorphism. To make the notions of norm groups, norm topologies and
reciprocity isomorphisms precise, we need the concept of a class formation.
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To define a formation, we need to begin with a group G and a family of
finite index subgroups, {G;}icx. This family must be closed under finite
intersections, upward closed (i.e. if H = G; and H' > H, then H = G,
for some j € X.) Finally, the family is closed under the conjugation action
of G. These conditions are satisfied if G is the Galois group of a Galois
field extension and the family is taken to be the Galois groups of all finite
subextensions. In the context of formations, we consider only topological
G-modules, in the sense that if A is a G-module, then the stabilizer of every
element of A is an element of the family. The formation itself consists of G,
the family of subgroups, and a topological G-module A. In this context, we
write Ap = H°(G(F/E), A). The meaning of this definition is clear in the
case that GG is actually a Galois group. Following Serre, elements of X are
called fields, and if Gg > G in the formation then we say F/E is a Galois
extension of fields.

We can define the Tate cohomology groups and we have well-defined no-
tions of inflation, restriction and corestriction.

A class formation consists of a formation and an invariant homomorphism,
denoted

invg : H*(F/E) — Q/Z
for each Galois extension F/E that satisfying H'(F/E) = 0. Furthermore,
invz must be injective, map H?(F/E) onto the unique subgroup of Q/Z of
order equal to [F': E], and for any extension E’/E, we must have

invg oResp/p = [E': E] - invg.

It is not clear a priori that the second cohomology groups should be cyclic,
but this follows from the definition of Tate cohomology groups and the
Nakayama-Tate theorem.

The invariant behaves nicely under corestriction. Indeed, invg oCorp /g =
invgs. This follows from the behavior of the invariant under the restriction
map and the fact that if [G : H] = n, then composing corestriction and
restriction is just multiplication by n.

The invariant homomorphism has an explicit definition in the case of a
local field K. Let K, be its maximal unramified extension, and let G denote
the Galois group Gal(K,,/K) = Gal(kp,/k), where k denotes the residue
field of K.

Recall that we have the following exact sequence in a local field:

0 — B(k) —» B(K) — X(G) — 0.

Recall also that the Brauer group of a finite field vanishes. Indeed, the
groups H'(G,k*) and H?(G,k*) have the same order since the Herbrand
quotient is 1, and the first group vanishes by Hilbert’s theorem 90. The
last term is identified with Q/Z, so that we have a map B(K) — Q/Z. It
is actually an isomorphism, and it is called invg. Let a be the canonical
isomorphism of H?(K,,/K) and Bk, and let 8 be a map H?*(G, K},) —
H?(G,7Z) induced by the valuation map. Let 6 : H*(G,Z) — H'(G,Q/Z)
be the coboundary induced by 0 — Z — Q — Q/Z — 0. Finally, let
v : HYG,Q/Z) — Q/Z be the evaluation map. Then,

invg =yo0d toBoal.
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It is not obvious that the valuation map induces an isomorphism. We
have an exact sequence of abelian groups

0—-Ux - K"—=7Z—0

for K alocal field. The first nonzero term is the group of units and the map
K* — Z is the valuation map. Let L/K be a Galois extension with group
G, U} be the subgroup of U; consisting of elements = such that v(1—xz) > n.
The claim follows from the following lemmas:

Lemma 4.10. For all ¢ > 1, we have HY(G,U}) = 0.
Proof. [12], XIL3.2, XIL.3.3. 0

The essential point in the proof is that as G-modules, U}J‘/U}jJrl are iso-
morphic to L, the additive group of the residue field of L. From the exact
sequence

O—>U£—>UL—>I*—>0
we obtain that H(G,Ur) = HY(G,L"). That 3 is an isomorphism is now
just Hilbert’s Theorem 90.
The fundamental property of invg is contained in the following result:

Proposition 4.11. Let L/K be a degree n Galois extension. Then
invy, OR@SK/L =n-invg.
Proof. [12], XIIL.3.7. O

The class formation we consider for local class field theory is the following:
we fix a local field K and a separable closure K.,. X will be the set of finite
subextensions of Ky, and G will be the Galois group Gal(Ksep/K). The
invariant homomorphism invg will be as defined above. From Hilbert’s
Theorem 90 and the previous proposition, we see that all the axioms for a
class formation are satisfied. If '/ E is a Galois extension with group G /g,
E,F € X, there exists a unique element

up/E € H?*(F/E) satisfying invg(up/p) = 1/n.
This element is called the fundamental class of the extension. The Nakayama-
Tate theorem shows that the cup product with this fundamental class gives
an isomorphism
H"(Gp/p, Z) — H" (G pp, F¥).
Specializing to the case where n = —2, we get a reciprocity isomorphism
Op/i - Gy — E*/NF*,

where N denotes the norm. In literature, the inverse of 6/ is called the
reciprocity isomorphism.

To finally establish what we call local class field theory, we have the
following:

Proposition 4.12. For a subgroup of E* to be a norm subgroup, it is nec-
essary and sufficient for it to be finite index and closed.

Proof. We need the result of [12], XI.5.2. It is precisely for this result that
the norm topology becomes relevant. Three axioms must be verified:
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(1) For every extension F'/E, where E is a finite extension of K, the
map Ng/g : " — E* is proper.

(2) For every prime number p, there is a field E, with the property that
if £, C E, then  — 2 viewed as a map on E* has a compact kernel
and its image contains the group of universal norms. This last object
is the intersection of all norm groups.

(3) There exists a compact subgroup Ug of E* such that every closed
subgroup of finite index of E* that contains Ug is a norm group.

For the class formation considered in local class field theory, these three
axioms are verified as follows: Every compact subset of E is contained in a
finite number of translates of the group of units in £ and Up = N P?/IE(U ),
verifying the first axiom.

For the second axiom, suppose p # char(K). We take E, to be field
obtained by adjoining the p!” roots of unity. If p = char(K) then the p
power map has no kernel.

For the last axiom, we let Ug be the group of units in F. Subgroups of
finite index of E* that contain Ug are inverses under discrete valuations of
nontrivial subgroups of Z. We then appeal to [12], proposition XIIL.5.13. O

4.2.3. Relationship with classical Artin reciprocity. We first recall the con-
struction of the Artin symbol. Let L/K be a Galois extension, A a Dedekind
domain with fraction field K and B the integral closure of A in L. Let P be a
prime ideal of B lying over a prime ideal p of A. Suppose that the extension
is unramified at P and that A/p has order q. The decomposition group at P
can be identified with the Galois group of L/K, the corresponding extension
of residue fields. This group is cyclic, as it is the Galois group of a finite ex-
tension of finite fields. The Frobenius element = +— x7 is a generator of this
group, and its order if fp, and it is denoted (P, L/K). An elementary prop-
erty of this element is that if g € Gal(L/K), (9-P,L/K) = g-(P,L/K)-g~*.
If L/K is an abelian extension then (P,L/K) depends only on the prime
over which P lies, so we have a well-defined Artin symbol (p, L/K). By
linearity one defines (a, L/K) for any ideal a C A that does not contain a
ramified prime.

Now, let K be a local field and L a Galois extension with group G. For
a € K*, we will write (a,L/K) for the image of a under the composition
a—ae€ K'/NL* = ﬁI(G, L*) followed by w = OZ}K. It is possible to
understand (a, L/ K) using characters.

Let x be a degree 1 character of G, so that x € Hom(G,Q/Z), and let
§x € H*(G,Z) be the image of y under the coboundary ¢ : H'(G,Q/Z) —
H?(G,7).

Proposition 4.13. x(a, L/K) = invg(a-dx), where on the right hand side,
the multiplication is the cup product.

Proof. [9], 2.3.1. O

We can thus obtain a connection between the Artin symbol and the local
reciprocity map:
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Proposition 4.14. Let L/K be an unramified extension of fields of degree n.
Let F € Gy denote the Frobenius element, a € K* and v(a) its valuation

in L. Then (a,L/K) = F"@.
Proof. [9], 2.5.2. O

The Artin symbol can sometimes be computed explicitly. The actual
proofs can be given via Lubin-Tate theory. For the moment, consider Q,.
The maximal abelian extension K of Q, is generated by all roots of unity.
It can be viewed as a compositum of two linearly disjoint subfields: Q,,,
generated by roots of unity that are relatively prime to p, and Qpe~, the
subfield generateg by p-power roots. By general theory, the Galois group
Gal(Qp,/Qp) =2 Z. It turns out that the group of pt" roots of unity has an
automorphism group isomorphic to the units in Z, (cf. [9].)

Proposition 4.15. Ifa =p"-u € Q, then (a, K/Qp,) = 0, induced the nth
power of the Frobenius automorphism on Qn, and induces the automorphism
given by u~! on Qpee, under the identification above.

Proof. [9], 3.1.2. O

For the general case, let K be a local field with 7 a uniformizing element.
The maximal abelian extension L/K can be decomposed as the composi-
tum of two subfields, L = K K,, in such a way that elements a = 7" - u
correspond Galois automorphisms of these subfields, much in the same way
as in the case of Q.

These fields can be understood using formal group laws. These are defined
as follows: let A be a commutative ring (always with identity,) and let F' €
A[[X,Y]]. F is called a commutative formal group law if F(X, F(Y,Z)) =
F(F(X,Y),Z), F(0,Y) =Y, F(X,0) = X, there exists a unique G(X)
such that F(X,G(X)) =0, F(X,Y) = F(Y,X), and F(X,Y) = X +Y
(mod deg?2). For our purposes we consider the case when A = Ok for K
a local field. Let myg C Ok be the maximal ideal. Two elements of mg
can be composed according to a commutative formal group law F', and this
sum converges and gives rise to a group structure (cf. [9], 3.2.) This group
will be called F(mg). For L/K a finite extension, one can similarly define
F(mp), and in the general case one passes to the direct limit of the finite
cases. Serre notes that the finite order elements of F(mg,,,) are a torsion
group on which the Galois group Gal(Kp/K) acts, and that the Galois
module structure is poorly understood. This problem appears analogous to
the fundamental problem in arithmetic topology (cf. [4].)

Let K be as above and let ¢ = |k|. Denote by F; the set of formal power
series f satisfying f(X) =7X (mod deg2) and f(X)= X? (mod 7). The
proofs of the following statements are in [9], 3.3 and 3.4.

Proposition 4.16. If f € F,, then there is a unique formal group law
Fy for which f is a abelian group endomorphism. Furthermore, for any
a € Ok, there is a unique [aly € Ok[[X]] such that [a]f commutes with f
and is congruent to aX (mod deg2). Then, [a]; will be an endomorphism
of the group defined by Fy. The map a +— [a]; is an injective homomorphism
Ok — End(Fy). Finally, for any f,g € Fr, the resulting group laws are
isomorphic.
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Now let K,/ K be a separable closure of K and Fy as above. Let My =
F¢(mgs,,,) and let Ef be the torsion submodule of M. Then, the field K
mentioned above is defined to be K(Ey). Now, if u € K* is a unit, then [u]f
acts on the torsion submodule of M;. Write a = 7" -u € K*. Then a —
(a, K%/K) is given by the action by [u~!]; on K,/K and the Frobenius on
K,/ K (recall that K, is obtained by a correspondence between unramified
extensions of K and separable extensions of k.)

The claim that the maximal abelian extension of K is in fact equal to the
compositum of K, and K, is a highly nontrivial statement. A proof can
be found in [8] or in [9].

4.2.4. Conductors and the Artin representation. Let L/K be a finite exten-
sion with 0,/ : K* — Gal(L/K) the associated reciprocity map. There is
a smallest number n such that 0,/ (Ug) = 0, called the conductor of L/K
and denoted f(L/K). Let ¢ be the associated Herbrand function.

Proposition 4.17. Let n be the largest integer such that the ramification
group Gy, is nontrivial. Then f(L/K) = ¢(n) + 1.

Proof. This follows from the following result, whose proof can be found in
[9], section 4: if L/K is an abelian extension with group G, then the local
reciprocity map 6 maps Uly{ onto GY for all y > 0. O

Let L/K be an arbitrary Galois extension with group G, and let x : G —
C* be a one-dimensional character of G. Let LX be the fixed field of ker(x).
This field is evidently a cyclic extension of K, and its conductor is denoted
f(x), called the conductor of .

Proposition 4.18. If {G;} denote the ramification subgroups of G and if
gi = |G|, then

() gi 1
D= => x(9).
i=1 go i 9eC;
Proof. Note that

N 1

() = (D) = 5 > x(9),
7
9eG;

where the u; are the augmentation characters of GG;. The claim now follows
from proposition 2.24. O

Finally, let K C F' C L be a tower of Galois extensions, G = Gal(L/K
and H = Gal(L/F).

Proposition 4.19. If x is a character of H and x* is the induced character
on G, then

FX) = vi(dp/r)X (1) + fr/e f (),

where dp/k is the discriminant and fr;i is the residue index.

Proof. [12], VI.2. O

4.3. Global class field theory.
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4.3.1. The Kronecker-Weber theorem and the Hilbert class field. The follow-
ing result can be viewed as the first instance of global class field theory.

Theorem 4.20 (Kronecker-Weber). Let K/Q be a finite abelian extension.
Then K is contained in a cyclotomic extension of Q.

For a local field K, the statement K% = K, K, is sometimes called the
local Kronecker-Weber theorem (cf. [8] or [9].) A corollary is that every finite
abelian extension of Q) sits inside of a cyclotomic extension ([8], corollary
4.12.)

We follow [8] to give a proof of the Kronecker-Weber theorem.

Lemma 4.21. If K is a finite Galois extension of Q with group G. Then
G is generated by the inertia groups of ramified primes in the extension.

Proof. Let H < G be a subgroup generated by these inertia groups and let
L be the fixed field of H. General theory shows that the fixed field for any
inertia group of a prime ideal is unramified at that prime. It follows that L is
unramified. Minkowski’s discriminant bound shows that a finite unramified
extension of Q is Q itself. O

Proof of the Kronecker-Weber theorem. Suppose K/Q is a finite abelian ex-
tension. Let p be a prime number and P a prime lying over p. We can
localize at P to look at the finite abelian extension Kp/Q,. By the lo-
cal Kronecker-Weber theorem applied to Q,, we have that Kp C Qp(u,v),
where u € Qy, and v € Qpe<, as above. So, we may assume v is a p* root of
unity, and the transitivity of the Galois group action on primes lying over p
shows that s is independent of P.

Let L be the cyclotomic extension of Q generated by the p°» roots of
unity for primes ramified in K, and denote by F' the compositum of L and
K. Galois theory shows that F' is a finite abelian extension of Q. It suffices
to prove the result for F', so we may assume L C K. We have

[K:Q>[L:Q] =[] o™,

where the product is taken over ramified primes and ¢ is the totient function,
since a prime ¢ is ramified in Q((,,) if and only if ¢|m.

On the other hand, inertia groups can be computed locally, so it follows
that the inertia group I, of a prime p has order < ¢(p°). By the lemma,
using the fact that G is abelian,

Gl <[] 15| < ] ew@™).

It follows that [K : Q] = [L : Q)], so that L = K. O

Now let K be a given number field. The field L in the following result is
called the Hilbert class field.

Theorem 4.22. There exists a finite Galois extension L of K such that L
1s an unramified, abelian extension of K and any other unramified abelian
extension of K is contained in L.

Proof. [2], theorem 8.10. O
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Note that by Minkowski’s discriminant bound, L = Q when K = Q.
Recall that if L/K is a Galois extension and p C Og is an unramified
prime, then we can uniquely define the Frobenius element and hence the
Artin symbol. In the case where L in an unramified extension, we have an
Artin symbol defined for all ideals in Og.

Theorem 4.23 (Artin reciprocity for the Hilbert class field). If L/K is the
Hilbert class field, then the Artin map

(L/K,-) : Ix — Gal(L/K)
s surjective, and is an isomorphism upon passage to the class group of K.
Proof. [2], section 8. O

Corollary 4.24 (Class field theory for unramified abelian extensions). The
Artin map is natural in the following sense: let M/K be an unramified
abelian extension. Then there is a unique subgroup H < Ck such that

(L/K."): Ox/H — Gal(M/K)

s an isomorphism. Furthermore, there is a bijective correspondence between
unramified abelian extensions of K and subgroups of Ck .

4.3.2. The general theory. Throughout the rest of this section, K will mean
a number field unless otherwise noted. Most of the results contained herein
also hold for function fields over a finite field. In a number field K, a prime
is an equivalence class of nontrivial valuations. These valuations can be
either discrete or archimedean. They are sometimes called finite primes
and infinite primes, respectively. Finite primes can be identified with prime
ideals in the ring of integers O . Infinite primes come in real and complex
varieties. They can be identified with embeddings of K in R and pairs of
conjugate embeddings of K in C, respectively.

Let K be fixed, O the ring of integers and Uy the units in that ring. We
denote by I the group of fractional ideals in K. If S is a finite set of primes,
we write I° for the subgroup generated by prime ideals not contained in
S, so that I® can be viewed as a free abelian group on prime ideals not
contained in S. Similarly we define K = {a € K*|(a) € I°}. We can relate
K% and I® to the standard ideal class group Ck via the following exact
sequence:

0 U — K =1 Cxg —0.

The only point to be checked is the surjectivity of the last map. The point
is that for any finite prime p in S, we can choose ¢, € p/p?, and for any
sequence of nonnegative integers {n,}pcs, we can find an algebraic integer
a satisfying

a=cy,” (mod p).

This last step requires the Chinese remainder theorem.

We also have the notion of a modulus of K, which is a function m from
the set of primes in K to nonnegative integers. A modulus is zero for almost
every prime, assigns zero to every complex prime, and assigns either zero
or one to each real prime. Note that the modulus defined here is exactly
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analogous to the modulus for function fields over an algebraic curve (cf.
[11].) We can write
m = H p(®),
P

The support of a modulus is denoted S(m).

Moduli also give rise to the concept of the Ray class group Cy, (cf. [8].)
Fixing a modulus m, we let K, 1 be the set of units a in K that satisfy
ordp(a — 1) > m(p) for all finite primes dividing m, and a, is positive for
all real primes dividing m. We map K,, 1 to I Sm by associating an element
the principal ideal it generates. We call the image (K, 1). Cy, is defined
as 190 /i(K,p, 1).

Let L/K be an abelian extension and let m be a modulus divisible by all
primes in K that ramify in L. If p is a prime not dividing m, then the Artin
symbol (L/K,p) is defined. We can thus define the Artin map

(L/K,-) : I°™ — Gal(L/K).

Theorem 4.25 (Class field theory for number fields, cf. [2], theorem 8.2).
Let L/K be an abelian extension, and let m be a modulus divisible by all
primes of K that ramify in L. Then, the Artin map is surjective. If the expo-
nents of finite primes dividing m are sufficiently large, then Gal(L/K) = Cy,
under the Artin map.

In particular, a number field with trivial class group has no unramified
abelian extensions. Unfortunately, there is no unique modulus for which
Gal(L/K) = Cy,. We do have the following (cf. [2], theorem 8.5:)

Proposition 4.26. If L/K is an abelian extension, there is a modulus f =
f(L/K) such that a prime of K divides f if and only if it ramifies in L, and
Cm = Gal(L/K) if and only if flm.

The modulus of the previous proposition is called the conductor of the
extension L/K. In general, if L/K s a finite extension of number fields,
G = Gal(L/K) is the Galois group and x is any one-dimensional character
of G, we define the conductor f(x) analogously to the local case. Let P/p be
a pair of primes, P C L lying over p C K, and let D, be the corresponding
decomposition group. We can restrict x to D), and we call the resulting
local conductor f(x,p). Note that it vanishes when p is unramified. We
define the global conductor f(x) by:

700 = [T/,
p

We have an analogy to proposition 4.19:

Proposition 4.27 ([9], proposition 4.4.5). Let K C F C L be a tower of
extensions, H = Gal(L/F). If x is a character of H, let x* be the induced
character of G. Then,

FOC) = d 0 Ny F(X)-

Returning to Artin reciprocity,
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Proposition 4.28. Let M,L/K be two abelian extensions. Let ®ps ., and
@1, denote the respective Artin maps. Then L C M if and only if there
exists a modulus m, divisible by all the primes in K that ramify in L or M

such that i(Kp 1) C ker(®arm) C ker(Pr ).

We can use this result to provide a second proof of the Kronecker-Weber

theorem. If L/K is an abelian extension, m is a modulus for which the Artin
map P, is defined, and m|n, then i(K,,1) C ker(®,,) implies i(K, 1) C
ker(®y,).
Second proof of the Kronecker-Weber theorem. If L/Q is an abelian exten-
sion, let m be a modulus that gives the Artin reciprocity isomorphism. By
the above observation, we can assume m = noo, where n is a sufficiently
high power of the product of all finite primes that ramify in L and oo is the
unique infinite prime of Q.

We can explicitly describe the Artin map for this modulus:

Oy : Ig(m) — Gal(Q(Cr)/Q) = (Z/nZ)"
is given by
%Z — [ab~1] € (Z/nZ)*,
with both @ and b relatively prime to n. It is clear that the kernel of this
map is precisely i(Q,,,1). So, we have
Q1 = ker(@o(,)/am) © ker(Pr/q)-

It follows that L C Q((p). O

We also consider L-series in order to get more information about the
Artin map. If m is an integer, a homomorphism y : (Z/mZ)* — S' c C*

is called a Dirichlet character. This can be extended to all of Z by zero if
ged(m, n) # 0. The Dirichlet L-series is defined to be

L) =S xmy/m = I X

_ -5
n>0 ged(p,m)=1 1 X(p)p

Note that L(xo, s) is the classical Riemann zeta function, and it extends
to a meromorphic function on the half plane Re(s) > 0 and is given by

((s) = — +0(5),

where ¢ is holomorphic on the half plane. Applying a logarithm, we obtain

1 1
L

ps 1—-s
as s — 1 from the right on the positive real axis. The analytic density d of

a set of primes T is defined by

1 1
E — ~dlog

ps 1—s
peT

as s — 1 as above. In a general number field, the Dirichlet density of T is

hm ZpES N(p)_s
s—1t —log(s —1)
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Let
A= > x)/p
ged(p,m)=1
A result in [10] shows that if ged(p,a) = 1, then

s_i afl S
N PRCRC

p=a (mod m)

where the sum on the right is taken over all Dirichlet characters (mod m).
Using the fact that if x # xo implies f,(s) remains bounded near s =1 (cf.
[10],) we see that the Dirichlet density of primes congruent to a (mod m)
is 1/¢p(m). It follows that the set of primes splitting in the cyclotomic field
Q(¢m) has Dirichlet density 1/¢(m). There is a more general result for
number fields, known as the Tchebotarev Density Theorem:

Proposition 4.29. Let L/K be Galois and let o denote a conjugacy class
in Gal(L/K). Let S be the set of primes in K that are unramified in L and
whose Artin symbol lies in o (recall that the Galois group acts transitively
on primes P in L lying over ones in L and for an unramified prime p in K,
the Artin symbols of primes lying over p are all conjugate.) The Dirichlet
density of S is

o]

[L: K]

This implies that the Artin map for a finite extension has infinite fibers.

The results of class field theory can be restated in a different language,
i.e. that of ideles. A good reference for this approach is [15]. We sketch
this approach here. Let p be a prime of K. We can complete K with
respect to this prime to get a field K,. The idele group Ix of K is a
subset of the product Hp K that consists of those elements whose entries
lie in the group of units U, for all but finitely many p. Replacing Uk, by
Ok, in the definition of Iy gives the ring of adeles, Ax. For example, the
idele group Ig is isomorphic to Q* x R x Hp Up. Indeed, given a tuple
T = (Too, T2, T3, T5,...), We can write

x = a(t,ug, us, us, .. .),

where ¢ > 0 and
a = sgn(Too) Hp”?’(gc).
P

There is a canonical map K* — I, where an element a € K* is taken to
its image in the completion at each prime. For every prime p of K, there
is a map i, : K* — Ir. The image i,(a) is the element whose p!" entry
is @ and all other entries are 1. There is a map j, : [x — K™ that is just
projection at the p coordinate.

It turns out that I is a locally compact group, and that the image of K*
under the canonical map is discrete. The quotient C is called the idele class
group. Note that this construction is exactly the same as the Jacobian for
an algebraic curve: it has the same universal property (cf. [15], proposition
4.1.) The example above shows that the idele class group Cq is R* x Hp Up.

The Artin reciprocity theorem can be restated in this language as follows:



30 T. KOBERDA

Theorem 4.30. Let L/K be an abelian extension. Then there is an Artin
map

that is surjective and continuous. The subgroups of finite index in Ck are
precisely norm subgroups, i.e. images of norm maps Ny i : Cp, — Ck for
finite extensions L/ K.

In view of the example above, we have that Hp U, is a Galois group of
some algebraic extension of Q. It is in fact the Galois group of the maximal
cyclotomic extension of Q.

4.3.3. Galois cohomology of idéles. If L/K is an arbitrary finite Galois ex-
tension with Galois group G, we obtain Ay, from Ag by extension of scalars,
i.e. A = Ax ®k L. There is a canonical G-module structure on A;, and
Iy, given by g — 1 ® g. We get another action of G on Ij however: re-
call that elements g € G induce isomorphisms g, : L, — Lg.,. Thus, if
x = (xy) € I, we write g-2 = ((g-)g.,). In this way we get iy, 09, = goi,
and g, © jy = jg.v © g. The image of Lj in I, under i, is not G-invariant. In
fact, the smallest G-invariant subgroup containing i, (L) is [ ], Juw Ly, where
this product is taken over primes lying over w.

Proposition 4.31. Let vg be a fized prime over w. For any r, there are
natural isomorphisms
"G I] Ly — H (Gu, L)
v/w
and
H' (G, [JUs) — H (Guy, Usy)-
v/w
These assertions are valid when regular cohomology is replaced by Tate co-
homology.

Proof. This follows from Shapiro’s lemma: let G be a group, H a subgroup,
and B an H-module. Let B* = Homgy(Z[G], B). B* is a G-module via
the action sp(g) = ¢(gs). Let 6 : B* — B be given by 6(¢) = ¢(1). Then
we get an associated homomorphism H?(G,B*) — HY(H,B). This is in
fact an isomorphism. See [15], proposition 7.2. O

The next five results can be found, with proof, in [15], sections 7, 8 and
9.

Proposition 4.32. I = Ig, the group of G-invariant idéles of L. Fur-
thermore,

"G, Ip) = @H’" (GV, (L¥)"),
where the direct sum is taken over all primes in K.

Corollary 4.33. H' (G, 1) =0 and

(6. 10) = X, 2/2).

v

where ny, = [LV : K,].
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The first statement is Hilbert’s Theorem 90, and the second follows from
the axioms for invg.

Proposition 4.34. Cx = CLG, where the action on Cf, comes from passing
to the quotient.

Proposition 4.35. If L/K is a cyclic extension of degree n, then the Her-
brand quotient h(G,CL) = n.

Proposition 4.36. Let L/K be a Galois extension of degree n with group
G, then |H°(G,CL)| and |H?*(G,Cy)| divide n, and H'(G,Cr) = 0.

This last result has a nice interpretation in terms of central simple alge-
bras. Indeed, let L/K be any finite Galois extension. H'(G,CL) = 0 so
that from the exact sequence

0—-L"—1I, —-C,—0
we get another short exact sequence
0— H*(G,L*) — H*(G,I1).
On the other hand,
H*(G, 1) = @ H*(G", (L)),

by proposition 4.32. It turns out that the image of the injection consists of
elements, the sum of whose local invariants is zero. It follows that:

Proposition 4.37. S central simple algebra over K splits over K if and
only if it splits locally everywhere.

This is called the Brauer-Hasse-Noether theorem.

The local invariants of a global field deserve a more precise treatment.
For ease of notation we will write H?(L/K) for H*(G,L*) and H?*(L’/K,)
for H*(GY,(L")*). Let a € @, H*(LY/K,). The local invariants of « are
denoted inv,(«) := inv,(j,(@)). The local invariants share many of the same
functorial properties as invariants in the case of local fields, and they are
generally verified by reducing to the local case.

Let K C L C F be a tower of finite Galois extensions. Let G' =
Gal(F/K), H = Gal(L/K), and G = G'/H = Gal(F/L). If o € H*(G, 1),
then inf(a) € H*(G',Ir). By the properties of the invariant in the local
case, we have inv,(inf(«)) = inv,(«). It follows that the Brauer group of a
global field can be treated locally by taking local invariants.

Now let o € H?(G', Ir). Let w/v be a valuation on L lying over one on
K, and consider the restriction map Res : H*(G',Ir) — H?*(H, Ir). Then,
invy, oRes = ny,, invy, where n,,/, = [Lqy @ Ky).

For the corestriction Cor : H2(H, Ir) — H*(G', Ir), we have

inv, oCor = Z invy,,
w/v
where the sum is taken over all primes of L lying over v.
Corollary 4.38. Let o € Br(K) and let K C L C K, the lattermost

being the separable closure of K. Then for the associated restriction map,
Res(a) = 0 if and only if [Ly, : K,]inv,(a) for every w lying over v.
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Recall that we can denote local Artin maps 6, : K, — G". We can can
define a map 6 : [x — G via

0(z) = [ ] 6u(@)o-

This is well-defined, since v(z,) = 0 whenever z, € U, and 0,(z,) =
Frek, (v)"@) whenever v is unramified. It follows that 6,(z,) = 1 for
almost all v. This map is called the global Artin map and gives the global
Artin reciprocity theorem.

5. ARITHMETIC TOPOLOGY

Let L be a link in S%. One can consider coverings of S® that are branched
over L. The point of arithmetic topology, according to [4], is to understand
the Galois module structure of the p-homology of a p-fold cyclic branched
cover using p-adic higher linking matrices.

5.1. Basic constructions. A link L in S3 bounds a Seifert surface. If two
embedded, nontrivially linked circles in S3 bound disjoint Seifert surfaces,
then they are called a boundary link. The proof that any link bounds a
Seifert surface can be done the same way as for a knot. Let X denote the
complement of a regular neighborhood of L. We can also construct n-fold
branched cyclic coverings of S3 in the same way as for a knot.

To construct the universal abelian cover of a knot complement X g (whose
fundamental group will be [m(Xg),71(Xk)],) we proceed as follows: pick
a Seifert surface S bounded by K, let Sp C S be its interior, and let N be
a regular neighborhood of Sy, so that that N = Sy x (—1,1). We denote
by Ni and N_ the subsets Sy x (0,1) and Sy x (—1,0). Let Yx denote
the complement of S in S3. Take a copy of Y for every integer and index
them appropriately. N; and N_ sit inside of Yx in a natural way. Glue
copies of N between successive copies of Yx by identifying N, with its copy
inside of (Yx); and N_ with its copy in (Yx)i;—1. The resulting space Xy
is a regular cyclic cover of X with deck transformation group Z. Since
T (XK)® = Z, we obtain 7 (Xk) = [m1(Xg), m1(Xk)]. We construct n-
fold cyclic coverings of X by taking the quotient under the action of nZ.
The torsion invariants of K are defined to be the torsion components of the
homology of these coverings as n varies. There is always an infinite cyclic
summand in the Z-homologies of these spaces, and it is generated by a loop
that goes around all the copies of Yx and N.

Note that all these covers have nonempty boundaries. Filling the bound-
aries in with solid tori gives rise to the n-fold branched cyclic coverings of
53, whose branching loci are precisely K.

5.2. The MKR dictionary. The summary presented here is essentially
taken from [14]. The MKR dictionary was proposed by Kapranov and
Reznikov and is based on the work of Mazur in [7].
(1) Closed, orientable, connected 3-manifolds correspond to schemes
Spec Ok for number fields K.
(2) Links correspond to ideals in Ok and knots correspond to prime
ideals.
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(3) An algebraic integer corresponds to an embedded surface, and the
operation a — (a) corresponds to taking the boundary of an em-
bedded surface. Closed embedded surfaces correspond to units in
Ok.

(4) Ck corresponds to the torsion component of first integral homology.
The free component of Hy(M,Z) corresponds to the group of units
in O after removing the torsion.

(5) Finite extensions of number fields correspond to finite branched cov-
erings.

(6) S3 is supposed to correspond to Q. Notice that S has no nontrivial
unbranched covers, and similarly Q has no nontrivial unramified
extensions.

(7) A Galois extension L/K with Galois group G induces a morphism
SpecOp, — (SpecOp,)/G = SpecOk.

(8) Let ¢ = p™. Consider the cyclotomic extension Q((,). It is ramified
only at p. These correspond to cyclic branched covers of knots in S3.
The union of these as g ranges over all powers of p should correspond
to the universal abelian cover of S3 \ K.

There is no hope for this dictionary to arise from any bijection between
homeomorphism classes of appropriate 3-manifolds and number fields. In-
deed, the only connected, closed, simply connected 3-manifold is the 3-
sphere, but there are number fields with no unramified extensions other
than Q: any quadratic extension of Q with trivial class group, for example.

By analogy to the number field case, we define the decomposition group
of a knot. In particular, let 7 : M — M/G be a branched covering whose
branching set is a link L. Note the analogy to number fields: any closed
orientable 3-manifold is a branched cover of S3. If K C L is a knot, we
denote by Dg the subgroup of G that fixes K. If K’ is the image of K
under 7, we see that the group of deck transformations Gal(K'/K) is cyclic
by covering space theory. We get an exact sequence

1 —Ix - Dg — Gal(K/K') — 1,

where Ix denotes the kernel of the covering map 7|x : K — K'. We will
call this group the inertia group of the knot K, and its order is ex. By
analogy to the number field case, we call the order of Gal(K/K') = fx. By
Galois theory in the number field case, the Galois group Gal(Or/P/Ok /p)
is cyclic as well, where P is a prime ideal in O, lying over p.

Recall the splitting theory for prime ideals of Ok in Op for a Galois
extension L/K. Now, if K’ C M/G is a knot over which the branched cover
7 is branched, then 7=!(K’) is a link L. Furthermore, it is obvious that
components of L are transitively permuted by G. By elementary theory of
group actions it follows that ex and fx are independent of the choice of
component K C L.

A prime P in Oy, is split if ep = fp = 1 and inert if fp = |G|. We have
completely analogous notions for knots. Henceforth, by a knot in M, we
will mean a knot whose image under the covering map is also a knot, and
whose image is contained in or disjoint from the branching locus.
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Proposition 5.1 ([14]. theorem 2.3). Let L/K be a Galois extension with
group G and let 7 : M — M/G' be a branched cover of 3-manifolds.

There are only finitely many ramified knots in Or, and only finitely
many ramified knots in M.

There are infinitely many split primes in Op and infinitely many
split knots in M.

If G,G" are cyclic then there are infinitely many inert primes in Of,
and infinitely many inert knots in M.

If G, G’ are not cyclic then there are no inert primes nor inert knots.
If G,G’ are cyclic of prime order then each prime and each knot is
either spit, ramified or inert.

Proof. We will give proofs of the number theoretic statements and then the
topological statements.

(1)

This follows from the ramification criterion for prime ideals.

Now, if G’ fixes a knot K pointwise, then it must land in the

branch locus under the covering. The branching locus is a codimen-
sion 2 submanifold, and hence has finitely many components. Since
G' is a finite group, 7 is proper and hence 7! (branching locus) is a
compact submanifold of M.
A prime P is split if and only if the associated decomposition group
is trivial. This will happen if and only if it is unramified and its
Artin symbol is trivial. The claim then follows from the Tchebotarev
density theorem.

Let K sit inside of the regular set M"Y of M, i.e. the open
submanifold of M on which G’ acts freely (note that by an easy
general position argument, M"Y is connected. Indeed, if M™ is any
manifold and N is any codimension 2 submanifold, then M — N is
always a connected submanifold of M.) The diversity of knots that
can be found in a neighborhood of any point in M"Y is as complex
as mo(Emb(S! — S3)), and all of these knots are split.

For any Artin symbol, the Tcheboratev density theorem gives infin-
itely many unramified primes with that symbol. Take the preimage
of a generator of G. Then Dp = G for all such primes.

It is easy to produce inert knots: indeed, pick an orbit of a point
x € M"Y, connect two points via a sufficiently nice path in M"Y,
and apply the G’-action. Some choice is involved in the path: we
can locally introduce knotting so that the resulting closed path is
knotted. Note that this fails for noncyclic group actions unless we
introduce branched submanifolds.

Evidently an inert prime must have a cyclic decomposition group
which is equal to the Galois group.

If K C M is any knot then the only free finite group actions on
K are cyclic.

If |G| = p a prime, then one of e, f, g must be equal to p, where
these integers are ramification degrees, residue degrees the number
of primes lying over the fixed prime in Og.

The same argument works for knots.
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If a finite group G acts properly discontinuously on a manifold M then
the projection m : M — M/G induces a map 7, on homology. This is
the analogue of the norm in number fields. The analogue of the inclusion
Ok — Oy, is the transfer map Hy(M/G,Z) — Hi(M,Z) given by adding up
lifts of singular chains. The operations on number fields pass to fractional
ideals and to the class group.

Several more results concerning the MKR dictionary can be found in [14],
but we will not record them here.
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