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1, The probiem formuiated in the title of this paper
Is important for the theory of three-dimensional recon-
struction, l.e., determination of the internal structure and
external shape from their projections. Three-dimension-
al reconstruction methods have found extenslive applica-
tion In x-ray, NMR, and ultrasonic tomography of the hu-~
man body and other objects, in electron microscopy of
biomolecuies, in radio astronomy, and in many other
areas. The problem of three-dimensional reconstruction
was formulated for the first time in 1917 by Radon.! In
the 1970s, a number of authors found new Ideas and al-
gorithms for three-dimensional reconstruction,?

Let us consider a three-dlzpens lonal functlon p(x, y, 2)
that describes the density distribution inside a body and
the shape of the body, The two-dimensional (p) and one-
dimenslonal (q) projections of this functlon {n Cartesian
coordinates are determined by the relations

Joty 2ydz=p(x,y),  [p(x,p)dy =q(x)= [p(x, . 2)dy dz. O
In general, for the projection of the function p (r) along an
arbitrary unit vector T In the plane X (x4 %3)y X LT (Flig. 1)
we have

Se(rydr=p,(X) (2)

Similarly, In the X plane we can project p In any one-di-
menslonal projection g, prescribing the projectlon angle
¥ (Fig. 1),

TP dxyy =qey). @
we note that
Jo(Md = fpx)d3X= [q(x)dx= V= const. )

The algorlthms of three-dlmenslopal reconstruction
allow the three-dimensional structure of a body p to be
determined from a set of various projections Pr, = (=1,
2y «y n), It Is understood here, however, that tﬁe mutual
orientations of the projection directions T, are known,
e.g., the body is rotated about an axis through particuiar
Intervals of angle,

However, there are problems In which the orientation
of the vectors 7| Is not known in advance. Typlcal in this
respect is the probiem of Investigating the structure of
ribosome particles by means of electron microscopy.
These ldentical asymmetric particles are deposited onto
a substrate; in general, these particies take very differ-
ent, arbitrary directions on the substrate, The electron-
microscope photograph s a set of varlous projections
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p.rl of these particles, l.e., in essence Is a set of projec-
tlons of one body in unknown orientatlons, These orlenta-
tlons must be known in order to effect a three~-dimen-
slonal reconstruction, Some approaches to problems of
this kind have been considered in Ref, 3.

2, We conslider the relationship between g, p, and q
for arbitrary orientations and their corresponding Four~
ler transforms

Fo=[p@)yexp2mi(r-S)d*r=&(S), (5)

where & s the Fourler operator, and 8 (X, Y, Z) is the
vector of Fourier space (reciprocal space),

Fp,=[p(Xi)exp2mi(X - §y,)d*x = P[S(X,, X,,0)]. (6)

Here X, and X; are the coordinates of the reciprocalspace
in the zero piane which is perpendicular to T, Relation

(6) Is well known as the theorem of projections: the Four-
ler Integral P (Xy, X,) of the projection p (xy, x,) (along T)
Is the planar central (passing through 8 = 0) cross sec-
tion P (X, X, 0) of the three-dimensional distribution

% (S) (3), perpendicular to T,

Simllarly, in accordance with (3), If in the plane X(X;,
X,) and in the plane 8 (X, X,) parallel to It we fix the ro-
tation angle ¥ that prescribes the direction of projection
of a two-dimenslonal projection into a one-dimensional

FIG. 1, A three-dimensional body ¢ {n the sphere of unit projection
vectors 7, {ts two- dimensfonal projection p(7) onto the plane X,
and the one-dimensional projection q(¢ ) of the function p onto the
plane X,
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FIG. 2, The two-dimensional cross
sections Py and P, of the three-dimen-
sional Fourier transform & (S) have a
straight intersection O, the general
one-dimensional transform my,.

projection (Fig. 2), we would have
fq = fq(Xw)eponi(xw X\y)dx‘g = Q(X‘,) = ¢(X1 ,0,0) (7)

l.e., the Fourler transform Q of the one~dimenslonai pro-
jection q Is the one-dimenslonal central cross section of
the transform @(5), which also lies in the plane of the two-
dimensional transform P (6).

The method of determining the mutual orientations of
the particles p from the projections p; follows from Egs.
(2)-(7), and it can be impiemented both In real space di-
rectly from the projections p and q and also ln reclprocal
space from their Fourler transforms P and Q.

Figure 1 shows the projection of a particie for one
direction of projection T, but by analogy one ean construct
the projections for any other directions Ty,

The projection is prescribed by the Euler angles w (6,
¢, ¥), where 6 and ¢ determine the directlion of the unit
projection vector T and ¥ determlnes the anguiar orlenta-
tion of the projection p relative to p.

We denote in terms of 7 the plane Z = 0, We can then
state that:

a) the two-dimensional Fourier transforms «7! 7 and
w3 ! Intersect along the stralght line my; = [Ty, T,), In Which
lies the one~dimensional transform @ common to both of
them;

b) accordingly, the projections p; and p; can be pro-
jected at different (proper) angles ¥4 and ¥4j Into the one-
dimensional projections q; (¥;) and q, (lllj) and have one
common projection, viz., the projection onto the straight
line of Intersection of the planes w'a and w3'c, where @
Is the plane Z = 0, onto which our particle Is projected
(Fig.3, see Figs. 1 and 2),

From a and b follows a simple prescription for find-
ing the mutual orlentations of arbltrarily arranged parti-
cles (l.e., transforms wiwy, 2 < k=n), elther directly
in real space or from thelr Fourier transforms P.

3. Reciprocal space. From the two~dimension-
al Fourler transforms Py, and Pk, (projections pk,» sz)
we find in each of them, in some angular interval, a se-
ries of one-dimenslonal central cross sectlons Qk Yi(x),
ka,,p (x)y 1 s1, j = n, where ¥; and !,bjhare the angles of
rotatt‘on in the planes Py, and sz (although these planes
are canonically identified with the plane 7, It Is more con-
venient for us to represent them as belng different). The
equality of a palr Qk“ .pl(x) = Qk,, wj(x) determines two
straight lines lj i, In the plane £k1 and gk, In the plane
Py, as well as the method of identifying these straight
lines, so that the functlons prescribed on them coincide.
In practice, the common cross section can be found or cho-
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FIG, 3, Any two-d{mensional projections py and p; of an unknown three-
dimengional function p have (each in {ts own plane) an {dentical (common)
one-dimensional projection q at some angles ¢y and ¥,.

sen by minimization of the Integrai [ | Qky, ¢ &) —

ka’ ¥ (x)]¥dx [in the case of an asymmetric particle, one
would naturally expect to find exactly one pair of coinclid-
ing crystal cross sections and also to find that

Qk,, Py (x) ™ Qk,, l,bl("x)]-

Lemma. The arrangement of three (or
more) planes (nonintersecting) can be de-
termlned unique to within the motion or
mirror symmetry in space if:

1) on each piane are known straight lines
along which other planes should interest,
and;

2) a method is given for ildentifying the
respective straight lines on different planes
(lk1k2 on Pk, and lk,k; on Pk,).

It can be assumed that wi I8 an identify transforma-
tlon and we must find wy, ..., &y, According to the lemma,
we can find the planes 7, w'z"w. voss w;‘w to within the mir-
ror symmetry relatlve to 7. The transformation wi! is
now determined from the condition that it takes the plane
7 and the straight line/ ; on it Into the plane wi'r with
the given straight ilne I, =nnw;'nr on it {the functions

on the stralght ilnes Iy and Iy, are identifiedin this case),

We note that the vectors 7} are easily found if we pro-
ceed from the vectors mj,j, (on which the straight lines
are drawn; see point a) since the vector T{ s proportional
to [mij mjkl.

4, Real space. On each of the projectlons py, p;
we fix a proper polar system of coordinates (Fig. 8). In
each of them we find on some angular interval a set of
one-dimensional projects A3, ppr 2, Yy The equallity of a
pair, dy,y; = da Ym = 912 determlneg on each of the pro-
jections the stralght iines, ny; and nyy, which are mrescribed
on them by thelr proper angles ¥; = ¥y, and ¥, = ¥py. By
selecting and finding the common projectlon q,3, we can
minimize the integral [|qy =y |%dx. Upon adding a third
projection, in the same way we can find a straight line nyg
wlith its proper angle ¥43 on py, a stralght iine ny with its
angle ¥,3 on py and on the third projection in its coordi-
nate system we can find the straight lines ngy with the an-
gle ¥3; and ng, with the angle ¥g,.

The poiar coordinates with variable angies ¥ In each
of the projections were chosen arbltrarily, but despite
this circumstance, the differences

Viz =Vise Vau —vas, s — Vs (8)
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are determined Invarlantly and are the angies between the
stralght lines of Intersection of each plane by the other
two planes.

As In Sec. 3, we need only use the iemma,
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X-ray diffraction methods, originating from the Inves-
tigations carried out by Burgeat and Taupin et al.,'* are
used extensively In studying damaged regions of a crystal
structure close to the surface which occur by lon implan-
tation, by a process of diffusion, and by other destructive
effects. This leads to a change In Interplanar distances
and to partial amorphlzation, For the analysis of the x-ray
diffraction curves, Burgeat and Taupin® used the Tokagl—
Topen equatlons, whereby employing the dynamic approxi-
mation, the dependence of interplanar distances on the
nonuniform distribution of the Impurities near to the sur-
face was caiculated. In the diffractlon from thin layers,
the weak scattering is described by a simple kinematic
approximation which was studied in Refs, 5-7. This clr-
cumstance made it possibie not onty to find such integral
quantities as the depth of the affected layer, the average
levels of amorphlzation, and changes In Interplanar dis-
tances® but also to reconstruct In detall the structure of
the layer directly contiguous to the damaged region,’

Opportunities for investigated damaged reglons in
crystal structures have recently Increased greatly due to
the use of triple crystal x-ray diffraction (TCD).%!! In the
TCD method, because of the abliity to resolve the diffuse
scattering, preclse measurements of rocking curves are
possible at very iarge angular deviations from the Bragg
position. Here the exient of spatial resolution increases
considerably and in Investigations of Refg, 12-13 damaged
layers, which were only a few monolayers thick, were
studled by TCD; here the deviation from the Bragg angle
exceeded the width of the rocking curve almost 1000 times.
Diffractlon at such large angular deviations, which was
studled in Refs. 11-13, was given the name "asymptotic
Bragg diffraction" (ABD).

The kinematic approximation can be used for the an-
alysis of the diffraction from thin layers, However, since
In x-ray diffraction experiments only the intensities are
measured and ail the phase information is lost, the pro-
cess of recoverlng the scattering characteristics of the
crystal-structure from the rocking curve leads to more
than one solution, The fact of this amblgulty of solution
Is well established but the matter of the degree of ambig-
uity and how to find the equivalent solutions have been
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virtually unexplored. Afanas'ev et al.® have shown that

in several cases there exist at least two different, but
equlvaient from the point of view of diffraction intensity,
solutions, For a damaged layer N monolayers thick, in
the absence of surface relaxation, the two equivalent sets
of Debye— Waller layer factors Vn. Vp,n =1, ..., Nare re-
lated by the equation

Vo=1=Vy_persn=1,..N. (1)

In the present study we solve the problem of recon-
stituting all the equivalent solutions for the scattering
characteristics of damaged layers of crystals under con-
ditions of asymptotic Bragg dlffraction.

The amplitude of the diffraction from a damaged layer
N monolayers thick for the case of a symmetric reflection
can be expressed as the sum of the amplitudes from in-
dividual monolayers;

rfp (@) N
Ay (0)=-.fL(—) I exp(-W, tip, +ign),
sinfg n=1 (2)
N+l Ad,,
q=2nctglp A8, A0=0 —8p, p, =271 = ,n=1,.,N,
m=n+1 dy

where 8 Is the angle of incldence, 0p is the Bragg angle,
A8 is the angular devlation from the Bragg angle,

exp (— Wp) is the Debye— Waller factor for the n-th layer,
Adp, s the difference between the n-th Interplanar distance
and the first, dy s the interplanar distance in the ldeal
crystal, fj () is the h- Fourier component of the polariz-
able portlon of the unit cell which includes the scattering
structure factor,

We restrict the analysis to the case where A9 >» 90
where 8 is the Darwin "plateau.” We can then write am-
plitude of the diffraction from the undamaged crystal (n
the kinematic approximation

T/u(8) expiqV+1)

40 ()= sinfp 1 —exp(iq)

We also restrict the dlscusslon to the case in which A9 Is

small, l,e., A§ <« 6p [this condition has already been ta-

ken Into account in Eq. (2) by disregarding the angular de-
pendences of the Debye— Waller factors and phase dis-
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