Fifth homework set solutions

1. From the $f(\alpha)$ curve we see $f\left(\alpha_{\max }\right)=0$, so the maximum value of α occurs on a set of dimension 0 , a point, for instance. Also, $f\left(\alpha_{\text {min }}\right)$ looks like about $\log (3) / \log (2) \approx 1.6$, so the minimum value of α occurs on a gasket. In (a) we see addresses 2,3 , and 4 are about equally filled, and more filled than address 1 , suggesting prob $_{1}<\operatorname{prob}_{2}=\operatorname{prob}_{3}=\operatorname{prob}_{4}$. In (b) we see addresses 1 and 4 are about equally filled, and addresses 2 and 3 are about equally filled, and less than 1 and 4. This suggests $\operatorname{prob}_{2}=\operatorname{prob}_{3}<\operatorname{prob}_{1}=\operatorname{prob}_{4}$. Recalling that so far as the r values are the same, the maximum α corresponds to the minimum probability and the minimum α corresponds to the maximum probability, we see the multifractal (a) is better described by this $f(\alpha)$ curve

(a)

(b)

2. Consider the multifractal generated by this IFS.

r	s	θ	φ	e	f	prob
$1 / 3$	$1 / 3$	0	0	0	0	$3 / 20$
$1 / 3$	$1 / 3$	0	0	$1 / 3$	0	$3 / 20$
$1 / 3$	$1 / 3$	0	0	$2 / 3$	0	$3 / 20$
$1 / 3$	$1 / 3$	0	0	0	$1 / 3$	$3 / 20$
$1 / 3$	$1 / 3$	0	0	$1 / 3$	$1 / 3$	$3 / 20$
$1 / 3$	$1 / 3$	0	0	$2 / 3$	$1 / 3$	$3 / 20$
$1 / 3$	$1 / 3$	0	0	0	$2 / 3$	$1 / 30$
$1 / 3$	$1 / 3$	0	0	$1 / 3$	$2 / 3$	$1 / 30$
$1 / 3$	$1 / 3$	0	0	$2 / 3$	$2 / 3$	$1 / 30$

(a) This IFS generates a fractal composed of $N=9$ pieces, each scaled by $r=1 / 3$, so having dimension $\log (9) / \log (3)=2$. This is the maximum value of $f(\alpha)$.
(b) Because all the scaling factors are the same, $1 / 3$, the maximum α corresponds to the minimum probability. This occurs for the fractal generated by the last three transformations, a fractal having dimension $\log (3) / \log (3)=1$. That is, $f\left(\alpha_{\max }\right)=1$.
(c) Similarly, the minimum value of α occurs for the fractal generated by the first six transformations, a fractal with dimension $\log (6) / \log (3)$. That is, $f\left(\alpha_{\text {min }}\right)=$ $\log (6) / \log (3)$.
3. (a) The maximum dimension occurs if at every stage $r_{1}=r_{2}=1 / 2$. If this happens, the result is a fractal made of $N=2$ pieces, each scaled by $r=1 / 2$,
and so of dimension $\log (2) / \log (2)=1$. The minimum dimension occurs if at every stage $r_{1}=r_{2}=1 / 4$. If this happens, the result is a fractal made of $N=2$ pieces, each scaled by $r=1 / 4$, and so of dimension $\log (2) / \log (4)=1 / 2$.
(b) In order to have the maximum dimension, at each stage we must have $r_{1}=1 / 2$ and $r_{2}=1 / 2$. The first has probability $1 / 2$, the second has probability $1 / 4$, so at each stage $r_{1}=r_{2}=1 / 2$ occurs with probability $(1 / 2) \cdot(1 / 4)=1 / 8$. Assuming the choices from stage to stage are independent of one another, the probability of finding $r_{1}=r_{2}=1 / 2$ in n stages is $(1 / 8)^{n}$. As $n \rightarrow \infty,(1 / 8)^{n} \rightarrow$ 0 , do the probability of obtaining a fractal of dimension 1 from this constrction is 0 .

In order to have the minimum dimension, at each stage we must have $r_{1}=$ $1 / 4$ and $r_{2}=1 / 4$. The first has probability $1 / 2$, the second has probability $3 / 4$, so at each stage $r_{1}=r_{2}=1 / 4$ occurs with probability $(1 / 4) \cdot(3 / 4)=3 / 16$. Assuming the choices from stage to stage are independent of one another, the probability of finding $r_{1}=r_{2}=1 / 4$ in n stages is $(3 / 16)^{n}$. As $n \rightarrow \infty$, $(3 / 16)^{n} \rightarrow 0$, do the probability of obtaining a fractal of dimension $1 / 2$ from this constrction is 0 .
(c) Because $r_{1}=1 / 2$ with probability $1 / 2$ and $r_{1}=1 / 4$ with probability $1 / 2$, the expected value of r_{1}^{d} is $(1 / 2) \cdot(1 / 2)^{d}+(1 / 2) \cdot(1 / 4)^{d}$. Because $r_{2}=1 / 2$ with probability $1 / 4$ and $r_{2}=1 / 4$ with probability $3 / 4$, the expected value of r_{2}^{d} is $(1 / 4) \cdot(1 / 2)^{d}+(3 / 4) \cdot(1 / 4)^{d}$. The the randomized Moran equation

$$
\mathbb{E}\left(r_{1}^{d}\right)+\mathbb{E}\left(r_{2}^{d}\right)=1
$$

becomes

$$
(1 / 2) \cdot(1 / 2)^{d}+(1 / 2) \cdot(1 / 4)^{d}+(1 / 4) \cdot(1 / 2)^{d}+(3 / 4) \cdot(1 / 4)^{d}=1
$$

Taking $x=(1 / 2)^{d}$, so $x^{2}=\left((1 / 2)^{d}\right)^{2}=\left((1 / 2)^{2}\right)^{d}=(1 / 4)^{d}$, the randomized Moran equation is

$$
(1 / 2) x+(1 / 2) x^{2}+(1 / 4) x+(3 / 4) x^{2}=1
$$

The positive solution is $x=(-3+\sqrt{89}) / 10$ and so the expected value of the dimension is

$$
d=\frac{\log ((-3+\sqrt{89}) / 10)}{\log (1 / 2)} \approx 0.694242 .
$$

