Fourth homework set solutions

1. (a) As indicated by the red boxes, we see fractal (a) is composed of $N=12$ pieces, each scaled by $r=1 / 4$, so the similarity dimension of this fractal is

$$
d_{s}=\frac{\log (12)}{\log (4)}=1+\frac{\log (3)}{\log (4)} \approx 1.79248
$$

(b) As indicated by the red boxes, this fractal is composed of 2 pieces of size $1 / 2$ and 4 pieces of size $1 / 4$. By the Moran equation, the dimension d satisfies

$$
2 \cdot(1 / 2)^{d}+4 \cdot(1 / 4)^{d}=1
$$

Writing $x=(1 / 2)^{d}$, we see that $(1 / 4)^{d}=\left((1 / 2)^{2}\right)^{d}=\left((1 / 2)^{d}\right)^{2}=x^{2}$, so the Moran equation can be rewitten

$$
2 x+4 x^{2}=1
$$

Applying the quadratic formula, the positive solution is $x=(-1+\sqrt{5}) / 4$ and so the dimension is

$$
d_{s}=\frac{\log ((-1+\sqrt{5}) / 4)}{\log (1 / 2)} \approx 1.69424
$$

(c) As indicated by the red boxes, this fractal is composed of 2 pieces of size $1 / 2$ and 2 pieces of size $1 / 4$. By the Moran equation, the dimension d satisfies

$$
2 \cdot(1 / 2)^{d}+2 \cdot(1 / 4)^{d}=1
$$

Writing $x=(1 / 2)^{d}$, we see that $(1 / 4)^{d}=\left((1 / 2)^{2}\right)^{d}=\left((1 / 2)^{d}\right)^{2}=x^{2}$, so the Moran equation can be rewitten

$$
2 x+2 x^{2}=1
$$

Applying the quadratic formula, the positive solution is $x=(-1+\sqrt{3}) / 2$ and so the dimension is

$$
d_{s}=\frac{\log ((-1+\sqrt{3}) / 2)}{\log (1 / 2)} \approx 1.44998
$$

2. Suppose the $x y$-plane contains a fractal A consisting of $N=4$ pieces, each scaled by a factor r, and suppose the z-axis contains a fractal B consisting of $N=2$ pieces, each scaled by the same factor r.
(a) By the similarity dimension formula we see $d_{s}(A)=\log (4) / \log (1 / r)$ and $d_{s}(B)=\log (2) / \log (1 / r)$.
(b) By the product formula, $d_{s}(A \times B)=d_{s}(A)+d_{s}(B)=\log (4) / \log (1 / r)+$ $\log (2) / \log (1 / r)$.
(c) The equation $d_{s}(A \times B)=2$ becomes

$$
\begin{aligned}
\frac{\log (4)}{\log (1 / r)}+\frac{\log (2)}{\log (1 / r)} & =2 \\
\log (4)+\log (2) & =2 \cdot \log (1 / r) \\
\log (8) & =\log \left(1 / r^{2}\right) \\
8 & =1 / r^{2} \\
r^{2} & =1 / 8 \\
r & =1 / \sqrt{8} \approx 0.353553
\end{aligned}
$$

3. (a) The Moran equation becomes

$$
\begin{aligned}
& (2 / 3)^{d}+\left(\left((2 / 3)^{2}\right)^{d}+\left((2 / 3)^{3}\right)^{d}+\ldots=1\right. \\
& (2 / 3)^{d}+\left(\left((2 / 3)^{d}\right)^{2}+\left((2 / 3)^{d}\right)^{3}+\ldots=1\right.
\end{aligned}
$$

Writing $x=(2 / 3)^{d}$, we obtain

$$
x+x^{2}+x^{3}+\cdots=1
$$

(b) Using the fact that for all x with $|x|<1$,

$$
x+x^{2}+x^{3}+\cdots=\frac{x}{1-x}
$$

we obtain

$$
\frac{x}{1-x}=1
$$

That is,

$$
1=2 x=2(2 / 3)^{d}
$$

Solving for d,

$$
d=\frac{\log (1 / 2)}{\log (2 / 3)} \approx 1.70951
$$

