
People and Events Behind the Fractal Images 
 
When asked to write this article I, without space limitation, have unleashed a flood of 
recollections about some men and some ideas involved in the art of fractals, including 
both art for art’s sake and art for the sake of science.  A few of these recollections may 
even qualify as history, or perhaps only as what the French call le petite histoire.  As 
some readers may already know, history for me is forever a part of the present. 
  
The Prehistory of some fractals-to-be: Poincaré. Fricke & Klein, and Escher 
 
To begin, while fractal geometry dates from 1975, it is in many ways important to know 
that a number of shapes now called fractals have been known for a much longer time.  
But surprisingly few had actually been drawn before the computer era.  Most were self-
similar or self-affine, and represent the artless work of the draftsmen on the payroll of 
science publishers.  Also, there are renditions of physical and simulated Brownian motion 
in the book by Jean Perrin, Les Atomes, and William Feller’s Introduction to Probability.  
These renditions have helped me dream in fruitful ways (as told in my 1982 book Figure 
The Fractal Geometry of Nature p. 240), but they are not beautiful.  Fractals-to-be-occur 
in the work of Fatou and Julia circa 1918, but they led to no illustrations in their time. 
 However, Poincaré’s even earlier works circa 1890 do include many sketches, and 
two very different nice stories are linked with illustrations that appeared shortly 
afterwards, in the classic book Vorlesugen ber die Theorie der automorphen 
Functionen, Fricke & Klein 1897.  This book’s text and its preface are written by Robert 
Fricke, but we read on p. vi of the book that the great Felix Klein, “a teacher and dear 
friend,” seems to have graciously consented to having his name added on the title page.  
The illustrations became even more famous than the text.  They have been endlessly 
reproduced in books on mathematics, and, for better or worse, have affected the intuition 
of countless mathematicians. 
 A tenacious legend claims that students in industrial drawing at the Technische 
Hochule in Braunschweig, where Fricke was teaching mathematics, drew these figures as 
assignment, or perhaps even as an exam.  Unking words have been written about some of 
the results. 
 In fact, I have done my share of detailing the defects of those figures which claim 
to represent the fractal-to-be limit sets of certain Kleinian groups (leading some to 
wonder which of Fricke’s students should b failed posthumously).  These two dubious 
figures were drawn with the help of the original algorithm of Poincaré, which is very 
slow, too slow even for a computer.  However, my paper in The Mathematical 
Intelligencer, M 1983m, has given an explicit and quick new algorithm.  The comparison 
is summarized in Figure The Fractal Geometry of Nature, page 179.  As was to be 
expected, the actual shape is by far the more detailed and refined of the two.  But this is 
not all: against all expectations, it is not necessarily perceived as more complicated.  I 
feel it is more harmonious, and can be comprehended as a whole, therefore it is perceived 
as far simpler than the clumsy old pictures.  However, a famous mathematician (15 years 
my senior) has expressed dismay at seeing the still vibrant foundation of his intuition 
knocked down by a mere machine. 



 Of wider popular interest by far are Fricke’s drawings of “hyperbolic” 
tessellations,” the reason being that they have become widely popular behind diverse 
embellishments of Morits C. Escher, as seen, for example, in the book Image The World 
of M.C. Escher.  Many people immediately perceive some “obvious but hard to describe” 
connection between Escher and fractals, and it is good to know that these tessellations are 
indeed closely related to fractals. 
 In fact, they were knowingly triggered by Poincaré, as is well documented by 
H.S.M. Coxeter in his 1979 Leonardo paper.  Having seen some of Escher’s early work, 
this well-known geometer wrote to him and received the following answer: “Did I ever 
thank you ...?  I was so pleased with this booklet and proud of the two reproductions of 
my plane patterns!...  Though the text of your article [in Trans. Royal Soc. Canada, 1975] 
is much too learned for a simple, self-made plane pattern-man like me, some of the 
illustrations.... gave me quite a shock...  Since a long time I am interested in patterns with 
“motives” getting smaller and smaller till they reach the limit of infinite smallness... but I 
was never able to in which each “blot” is getting smaller gradually from a centre towards 
the outside circle-limit, as [you] show... I tried to find out how this figure was 
geometrically constructed, but I succeeded only in finding the centers and radii of the 
largest inner-circles.  If you could give me a simple explanation..., I should be immensely 
please and very thankful to you!  Are there other systems besides this one to reach a 
circle limit?  Nevertheless,... I used your model for a large woodcut.”  This was his 
picture “Circle Limit I,” concerning which he wrote on another occasion: “This woodcut 
Circle Limit I, being a frist attempt, displays all sorts of shortcomings.” 
 In his reply, Coxeter told Escher of the infinitely many patterns which tessellate a 
Euclidean or non-Euclidean plane by black and white triangles.  Escher’s sketch-boks 
show that he diligently pursued these ideas before completing Circle limites II, III, and 
IV.  He wrote: “In the colored woodcut Circle Limit III, most of the defects [of Circle 
limit I] have been eliminated.”  In his Magic Mirror of M.C. Escher (1976), Bruno Ernst 
wrote: “best of the four is Circle Limit III, dated 1959...  In addition to arcs placed at right 
angles to the circumference (as they ought to be), there are also some arcs that are not so 
placed.”  [Now going back to Coxeter]  “In fact all white arcs ‘ought’ to cut the 
circumference at the same angle, namely 80 degrees (which they do, with remarkable 
accuracy).  Thus Escher’s work, based on his intuition, without any computation, is 
perfect, even though his poetic description of it was only approximate.” 
 The reader is encouraged to read Coxeter’s paper beyond these brief quotes.  But 
an important lesson remains, and deserves to be restated.  The Coxeter pictures, which 
made Escher adopt the style for which he became famous, hence eventually affected the 
aesthetics of many of out contemporaries, were not the pure creation of an artist’s mind.  
They came straight from Frick & Klein, they were largely inspired by Henri Poincaré, 
and they belong to the same geometric universe as fractals.  Also note that the preceding 
story is one of only two in this paper to involve a person who had been professionally 
trained as an artist. 
 
The Fractal Mountains of R. F. Voss 
 
My next and very pleasant task is to tell how I met Voss and some other people important 
to the story of the Art of Fractals. 



 During the Spring of 1975, Richard F. Voss was hopping across the USAA in 
search of the right job.  He was soon to become Dr. Voss, on the basis of a Berkeley 
dissertation whose contents ranged from electronics to music, without ever leaving the 
study of a widespread physical phenomenon (totally baffling then, and almost equally 
baffling today), called 1/f noise.  Other aspects of this noise, all involving fractals, were 
favorite topics of mine since 1963, and my book Figure Les objets fractals, which was 
based on a generalization of 1/f noise from curves to surfaces.  One of the more striking 
parts of Voss’s thesis concerned (composed) music, which he discovered had many 
characteristics involving 1/f noises.  He had even based a micro-cantata on the historical 
record of Nile River discharges, a topic dear to my heart. 
 Therefore, Voss and I spoke after his job-hunting talk at IBM, Yorktown, and I 
offered him a deal:  come here and let us play together; something really nice is bound to 
come out.  He did join the Yorktown low-temperature group and we soon became close 
co-workers and friends.  Contrary to what is widely taken for granted, he never joined my 
tiny project, and he spent the bulk of his time on experimental physics.  Nevertheless, his 
contribution to fractals came at a critical juncture, and it has been absolutely essential.  
First, we talked about writing a book on 1/f noise, but this project never took off (and no 
one else has carried it out, to my knowledge, to this day).  Indeed, each time he dropped 
by, to try and do something together, he found me involved with something very 
different, translating and revising Figure Les objects fractals.  The end product came out 
in 1977 as Figure Fractals.  There were many graphics problems in its preparation.  Voss 
ceaselessly inquired about what Sig Handelman and I were doing, and kept asking 
whether we would consider better ways.  Then he found a sure way of obtaining our full 
attention: he conjured a computer graphics system where none was supposed to exist, and 
brought along pictures of fractals that were way above what we had been dealing with 
until then.  They appeared in Fractals, which is why the foreword describe him as the co-
author of the pictures in that book. 
 Color came late to Yorktown, where it seems we fractalists continued to be the 
only ones to use demanding graphics in our work.  We first used color in my next book, 
the 1982 Figure Fractal Geometry of Nature.  In late 1981, the text was already in the 
press, but the color pictures had not yet been delivered to the publishers.  The film 
recorder we were using was ours only on a short lease, and this fact and everything else 
was conspiting to make us rush, but I fought back.  Since ‘the desire is boundless’ (Figure 
FGN, p. 38), I fought hardest for the success of the Fractal Planetrise on the book’s 
jacket.  It was soon refined to the point of what (by the standards of the day) was 
perfection, but this was not enough.  Just another day’s work, or another week’s, I 
pleaded, and we shall achieve something that would not need any further improvement, 
that would not have to be touched up again when the “lo-fi” graphics of the day were to 
be replaced by the “hi-fi” graphics.  To my delight, Voss was also a perfectionist. 
 Fractal illustrations had started as wholly ulitarian; the perceived beauty of the old 
ones by Jean-Louis Oneto and Sig Handelman was an unexpected and unearned bonus.  
Buy by 1981 their beauty had matured and it deserved respect, even from us hard 
scientists, and it deserved time.  Many people have, since those days, showed me their 
fractal pictures by the hundreds, but I would have been happier in most cases with fewer, 
more carefully worked out ones. 



 Everyone experiences wonder when observing Voss’s pictures, and “to see [them] 
is to believe [in fractal geometry].”  Specialists also wonder how these pictures were 
done, because, without ever drawing specific attention to the fact, Voss has repeatedly 
conjured technical tricks that were equivalent to computer graphics procedures that did 
not officially develop until much later.  This brings to mind a philosophical remark. 
 Watching Voss the computer artist, and Voss the physicist at work for many years 
had kept reminding me of the need for a fruitful tension between the social and the 
private aspects of being a scientist.  The only civilized way to be a scientist is to engage 
in the process of doing science primarily for one’s private pleasure.  To derive pleasure 
form the public results of this process is a much more common and entirely different 
matter.  The well-known danger is that, while dilettante, is a term of contempt.  While not 
a few individuals profess to be serious scientists, yet many are motivated primarily by 
personal enjoyment of their work, very few could provide what I view as the only 
acceptable evidence of  “serious dilettantism.”  This demonstrates a willingness and, 
perhaps, even a compulsion to leave significant portions of one’s best work unpublished 
or unheralded – knowing full well that one could claim no credit for them.  This may be 
easiest for the scientific giants; lars Onsager was a legend in this respect.  On the other 
hand, every scientist has been the active or the passive witness of episodes when one 
could not or would not work in a field without becoming thoroughly uncivilized.  The 
true test, therefore, arises when civilized behavior is neither easy nor impossible.  On 
these, and other stringent grounds, I view Dick Voss (as graphics expert and as physicist) 
as being one of the most civilized serious scientists in my wide acquaintance. 
 
Old Films: Competing with the Good Lord on Sunday 
 
What about films?  We were ill-equipped to produce them, having only an exhausted film 
recorder (a tube-based Stromberg Carlson 4020) at our disposal.  In 1972 with Hirsh 
Lewitan, however, we did prepare a clip on the creation of fractal galaxy clusters, using 
the Seeded Universe method.  Then, in 1975, with Sig Handelman, we added a clip on 
fractal mountains: the landscape later used as Plate 271 of Figure The Fractal Geometry 
of Nature emerged slowly from the deep, then rotated majestically (or at least very 
slowly), and finally slipped back under water.  Everyone spontaneously called this the 
Flood Sequence.  By a fluke, the highest altitude achieved at two distinct points, and a 
programming flaw stopped the Flood when these points were still visible.  Delighted, I 
indulged in commenting that my fractal model of relief had predicted that there were two 
tips to Mount Ararat, not one ... until an auditor straight from Armenia reported very 
dryly that this fact was well-known to everyone in his country. 
 The Galaxy Clustering  and the Flood sequences, taken together, were nicknamed 
Competing with the Good Lord on Sunday.  They soon came to look out-of-date and 
pitifully primitive, but now they look good again: they are of historical interest ... 
valuable antiques. 
 In the Flood, the observer simply moved around a landscape without zooming.  
The same was true in the animation of one of Voss’s data bases, done by R. Greenberg 
Associates for an IBM commercial clip. 
 
Star Trek II 



But what of the “real Hollywood?”  “It” immediately realized the potential of Voss’s 
landscape illustrations in my 1977 book, and soon introduced variants of these fractals 
into its films.  This led to a lovely reenactment of the old and yet always new story of 
Beauty and the Best, since it is taken for granted that films are less about Brains than 
about Beauty, and since the few brainy mathematicians who had known about individual 
fractals-to-be, had taken for granted (until my books) that these were but Monsters.  
Beastly.  The pillars of “our geographically extended Hollywood” were Alain Fournier, 
Don Fussell and Loren Carpenter.  Early in 1980, John W. Van Ness, a co-author of mine 
in 1968 who had moved to the University of Texas at Dallas, asked me to comment on 
the draft of his student Fournier’s Ph.D. dissertation.  Fournier and Fussell had written 
earlier to as, asking for the IBM programs to generate fractal mountains, but we did not 
want to deal with lawayers for the sake of programs that were not documents, and the 
programs were already too intimately linked to one set of computers to be readily 
transported anywhere else.  Therefore, Fournier and Fussell went their own way, and 
soon hit upon an alternative method that promised computations drastically faster than 
those of Voss. 
 Precisely the same alternative was hit upon at the same time by Loren Carpenter, 
then at Boeing Aricraft, soon to move to Lucasfilm, and now at Pixar.  In his own words 
in The College Mathematics Journal of March 1984, “I went out and bought [Figure 
Fractals] as soon as I read [Martin] Gardner’s original column on the subject in Scientific 
American.  I have gone through it with a magnifying glass two or three times.  I found 
that it was inspirational more than anything else.  What I got out of it myself was the 
notion that ‘Hey, these things are all over, and if I can find a reasonable mathematical 
model for making pictures, I can make pictures of all the things fractals are found in.’  
that is why I was quite excited about it...” 
 “The method I use is recursive subdivision, and it has a lot of advantages for the 
applications that we are dealing with here; that is, extreme perspective, dynamic motion, 
local control – if I want to put a house over here, I can do it.  The subdivision porocess 
involves a recursive breaking-up of large triangles into smaller triangles.  We can adjust 
the fineness of the precision that we use.  For example, in ‘Star Trek,’ the images were 
not computed to as fine a resolution as possible because it is an animated sequence and 
things are going by quickly.  You can see little triangles if you look carefully, but most 
people never saw them.” 
 “Mandelbrot and others who have studied these sorts of processes mathematically 
have long been aware that there are recursive approximations to them, but the idea of 
actually using recursive approximations to make pictures, a computer graphics-type 
application, as far as we know first occurred with me and Fournier and Fussel, in 1979...” 
 “One of the major problems with fractals in synthetic imagery is the control 
problem.  They tend to get out of hand.  They will go random all over the place on you.  
If you want to keep a good tight fist on them and make it look like what you want it to 
look like, it requires quite a bit of tinkering and experience to get it right.  There are not 
many people around who know how to do it.” 
 While still at Boeing, Carpenter became famous in computer graphics circles for 
making a short fractal film, Vol Libre, and he was called to Lucasfilm to take a leading 
role in the preparation of the full feature Figure Star Trek II: The Wrath of Khan.  Several 
computer-generated sequences of this film involve fractal landscapes, and have also 



become classics in the core computer graphics community.  The best known is the 
Genesis planet transformation sequence.  A different company, Digital Productions, later 
included massive fractal landscapes in The Lost Starfighter, which I saw – without 
hearing it – in an airplane.  I had seen Star Trek II in a suburban movie-house (since I had 
gone there on duty, my stub was reimbursed).  An associate had seen it on a previous day, 
and had reported that it was too bad that the fractal parts had been cut (adding as 
consolation that it was known that they always cut out the best parts in the suburbs).  Of 
course, my wife and I immediately saw where the fractal portion started, and we 
marveled:  If someone less durably immersed than the two of us in these matters could be 
fooled so easily, what about people at large? 
 Later, when he was interviewed for the summer 1985 issue of La lettre de 
l’image, Carpenter described the severe cost constraints imposed by his work:  “We 
cannot afford to spend twice as much money to improve the quality of the pictures by 
2%.”  One would hate to be asked to attach a numerical percentage to quality 
improvement, but computer costs do keep decreasing precipitously, and there is hope that 
future feature films using fractals will be affordable while pleasing even the crankiest 
mathematician. 
 This Beauty and the Beast episode was enjoyable but drew us into a few scrapes, 
long emptied of bitterness, but still instructive.  we were disappointed that the endless 
credits of the films never included the word fractal, nor our names.  Once excuse was that 
everyone who mattered knew, so there was no need to say anything.  Besides, lawyers 
feared that, if mentioned, we would have been put in a position to sue for a part of the 
cake.  The world at large does not believe that scientists are resigned tot eh fact that their 
best work – the principle of mathematics and the laws of nature – cannot be patented, 
copyrighted,  or otherwise protected by law.  All that the scientists can expect is to be 
paid in the coin of public – not private – praise. 
 Later on, we greeted with amusement Alvy Ray Smith’s tern “graftal.”  The 
differences from “fractal” were hardly sufficient to justify this proprietary variation on 
my coinage. 
 Fournier & Fussel and Carpenter are not represented in The Science of Fractal 
Images.  It is a pity that we did not come to know them better.  They have hardly ever 
written to us, even at times when we could have helped, which we would have loved to 
do, and, in any case we would have linked to follow their work as it evolved. 
 
Midpoint Displacement in Greek Geometry: the Archimedes construction for the 
Parabola 
 
Our scrapes with “our Hollywood” have led to a variety of mutually contradictory 
impressions.  Some people came to believe that the fractal landscapes in Fournier, Fussell 
& Carpenter 1982 are, somehow, not “true fractals.”  Of course they are fractals, just as 
true as the Koch curve itself.  Other people believe that I begrudge credit for “recursive 
subdivision,” in order to claim “midpoint displacement” – which is the same thing under 
a different term – for myself.  Actually, as the French used to be taught in high school 
geometry, the basic credit for the procedure itself (but of course not for fractals) belongs 
to someone well beyond personal ambition, to Archimedes (287 – 212 BC). 



 The antiquity of the reference is a source of amusement and wonder, but rest 
assured that his work is amply documetned.  A great achievement of Archimedes was 
when he evaluated the area between a parabola and a chord AB, an achievement that 
many writers view as the first documented step towards calculus.  The technique 
Archimedes used was to take a chord’s endpoints and interpolate recursively to values of 
x so that they form an increasingly tight dyadic grid.  Using this, Archimede’s was able to 
derive the rule of upward displacements though the parabola would not have an equation 
until Descartes devised analytic geometry. 
 
Fractal Clouds 
 
The algorithm Voss used to generate fractal mountains extends to clouds, as described in 
his contribution to this book.  The resulting graphics are stunning, but actually do not 
provide an adequate fit to the real clouds in the sky.  This is the conclusion we had to 
draw from the work of Shuan Lovejoy. 
 Lovejoy, then a meteorology student in the Physics department at McGill 
University in Montreal, wrote to me, enclosing a huge draft of his thesis.  The first half, 
concerned with radar observation,. was not controversial and sufficed to fulfill all the 
requirements.  But the second half, devoted to the task of injecting fractals into 
meteorology, was being subjected to very rough weather by some referees, and he was 
looking for help.  My feeling was that this work showed very great promise, but needed 
time to “ripen.”  (I was reminded of my own Ph.D. thesis, which was hurried to 
completion in 1952; I had been in a rush to take a post-doctoral position, a reason that 
soon ceased to appear compelling.)  Hence, my recommendation to Lovejoy was that he 
should first obtain his sheepskin on the basis of his non-controversial work, and then join 
me as a post-doctoral student.  I argued that he must not leave in his publications too 
many points that the unavoidable unfriendly critics could latch on to. 
 I was very impressed by Shaun’s area-perimeter diagram, drawn according to 
fractal precepts in my 1977 book, which suggested that the perimeters of the vertical 
projections of clouds (as seen from zenith, for example from a satellite) are of fractal 
dimension about 4/3.  Lovejoy 1982, a paper that limited itself to this diagram and a 
detailed caption, immediately became famous.  A second of many parts of Lobejoy’s 
thesis required far more work and, finally, I pitched in.  Our joint paper came out years 
later as M & Lovejoy 1985.  The illustrations of clouds have ytet to be surpassed.  ??? 
Figure ????  By then, Lovejoy had drifted away from me.  He had grown impatient with 
my refusal to reopen old fights that had been won to an acceptable degree, and by my 
deliberate preference for seeking “soft acceptance,” with controversy only when it is 
unavoidable, as opposed to “hard acceptance,” with unforgiving victims. 
 Clouds seem to pose a severe challenge to landscape painters, but one has 
achieved fame for his prowess.  His name was Salomon van Ruysdaë l (1602-1670), and 
he brings to mind a question and a story.  The question is whether fractal geometry can 
help us to compare the clouds of Ruysdael with those of Mother Nature.  Elizabeth Carter 
was an undergraduate in meteorology at the University of California at Los Angeles 
(UCLA), in the group of Professor George L. Siscoe.  Her hobby is photographing 
clouds, and she had found a nice way of getting academic credit for it.  The fractal 
dimension was estimated for many varied clouds’ contours 9as seen from a newarly 



horizontal direction – not the same thing as Lovejoy’s views form the zenith).  The 
conclusion was that Nature’s clouds’ D’s are far more tightly bunched.  In hindsigh, the 
result was to be expected: the painter chose to paint clouds that are dramatic, yet not 
impossible, hence his clouds’ D’s are near Nature’s maximum. 
 
Fractal Trees 
 
Before moving to nonlinear fractals, it seemed logical to me, as manager of a tiny fractals 
group, to perform a few preliminary tests without perturbing the on-going programs.  
This is how a Princeton senior, Peter Oppenheimer, came to work with us for a few 
weeks.  He later wrote his senior thesis on fractals and, eventually, he moved to the New 
York Institute of Technology on Long Island, and became an expert on fractal botany.  
Today he has competition from Przemyslaw Prusinkiewicz. 
 Drawing nonrandom fractal trees is comparatively easy, and there are several in 
Figure The Fractal Geometry of Nature.  Drawing random fractal trees that are not of 
unrealistic “sparseness” presents a major difficulty; branches must not overlap.  Suppose 
that a random tree is to be constructed recursively.  Once cannot add a branch, or even 
the tiniest twig, without considering the Euclidean neighborhood where the additions will 
be attached.  However, points that are close by, according to Euclidean distance, may be 
far away according to the graph distance taken along the branches.  Therefore, a random 
recursive construction of a tree, going from trunk to branches and on to twigs, is by 
necessity a global process.  One may be drawn to seek a construction by self-
contemplation, or by obeying the constraints imposed by one’s computer’s better way. 
 By contrast, space appears forgiving; more precisely, it offers an almost 
irresistible temptation to cheat.  Show a shape described as a tree’s projection on a plane, 
and challenge yourself to imagine a spatial tree having such a projection.  Even when the 
original spatial branches happen to intersect or become entangled, our mind will readily 
disentangle them, and see them as a tree. 
 Now back to planar trees, and to ways of drawing them without worrying about 
self-intersection.  A completely natural method was devised by Tom Witten and Leonard 
Sander.  It came about in what we think is the best possible way, not during a search for 
special effects, but during a search for scientific understanding of certain web or tree-like 
natural fractal aggregates.  The Witten-Sander method is called diffusion limited 
aggregation.  Most unfortunately, it fails to yield realistic botanical trees, but it gives us 
hope for the future.  
 
Iteration, Yesterday’s Dry Mathematics, Today’s Weird and Wonderful New 
Fractal Shapes, and the Geometry Supercomputer Project 
 
Now, from fractals that imitate mountains, clouds, and trees, let us move on to fractals 
that do not.  For the artist and the layman, they are simply weird and wonderful new 
shapes.  My brief involvement with Poincaré limit sets has already been touched upon.  
My initiation to Julia sets began at age 20, when the few who knew them called the J-
sets.  This, and the beginning of my actual involvement with the study of iteration of z → 
z2 + c, have both been described in an invited contribution to Figure The Beauty of 
Fractals, and need not be repeated here. 



 But I do want to mention a brief interaction with David Mumford which 
eventually contributed to a very interesting and broad recent development. 
 David’s name was known to me, and to everyone else in mathematics, because of 
his work in algebraic geometry.  We met when I came to Harvard in 1979, and, in 
November 1979, he came to a seminar I gave.  After the talk, which was on iteration, he 
rushed towards me: “On the basis of what you have said, you should also look into 
Kleinian groups; you might even find an explicit construction for their limit set.”  
“Actually,” I responded, “I already have a nice algorithm for an important special case.  
Please come to my office, and I shall show you.” 
 David came over and saw the algorithm that was eventually published as M 
1983i, as told earlier.  The exact words of our conversation are, of course, lost, but I 
should remember their substance as follows:  “This is so simple, that Poincaré should 
have seen it, or someone else singe Poincaré.  Why did this discovery have to wait for 
you?” – “Because no one before me has used a powerful new tool, the computer!” – “But 
one cannot prove anything with a computer!” – “Sure, but playing with the computer is a 
source of conjectures, often most unexpected ones.  The conjecture it has suggested about 
Kleinian limit sets has been easy to prove; other are too hard for me.” – “In that case, 
would you help me learn to play with the computer?” – “With pleasure, but we would 
have to get help from my latest IBM assistant, Mark laff.” 
 Soon afterwards, it became clear that Mumford had to seek associates closer by, 
in Cambridge.  He was tutored by my course assistant Peter Moldave, and started 
working with David Wright, then a Harvard graduate student in mathematics, who 
ceased, at that point, to hide his exceptional programming skills.  Eventually, Mumford 
became thoroughly immersed in computer, first as heuristic tools, then for their own sake. 
 He became instrumental in helping the awareness of the computer-as-tool idea 
that spread among mathematicians.  The resulting needs grew so rapidly that, after barely 
eight years, the Figure National Science Foundation had established a Geometry 
Supercomputer Project!  The charter members are F. Almgren (Princeton), J. Cannon 
(Brigham Young), D. Dobkin (Princeton), A. Douady (ENS, Paris), D. Epstein 
(Warwick), J. Hubbard (Cornell), B. Mandelbrot (IBM & Yale), A. Marden (Minnesota), 
J. Milnor (IAS, Princeton), D. Mumford (Harvard), R. Tarjan (Princeton & Bell Labs), 
and W. Thurston (Princeton).  At the risk of sounding corny, let me confess that the 
opening of this project was a high point in my life.  In 1991 it expanded, and its name 
changed to Geometry Center. 
 The next topic to be discussed concerning iteration is my fruitful interaction with 
V. Alan Norton, a Princeton mathematics Ph.D. in 1976, who was in my group as a post-
doc in 1980-82, and stayed on the research staff at IBM Yorktown.  He was one of the 
two principal “illustrators” of Figure The Fractal Geometry of Nature, as seen in that 
book’s very detailed picture credits.  He has achieved great renown, starting with 
Siggraph 1982, for splendid quaternionic Julia set pictures. 
 Norton also worked on the end-papers, without legend, for The Fractal Geometry 
of Nature Figure.  How these end-papers came about is a tale worth recounting.  They 
involve an important problem from the theory of iteration of analytic functions, an 
artifact due to inherent limitations of the computer, and two decorative touches. 
 The original graph was unbounded, and Norton introduced a decorative touch: 
inversion with respect to a circle.  I loved the result; unfortunately, while bounded, it did 



not fit neatly on a double page spread.  Hence I imposed a second and more arbitrary 
decorative  touch: the horizontal stretching of the graph to fill the available space. 
 The serious mathematical problem that had led me to this graph was the use of 
Newton’s method to solve the equation exp(z0) = c.  The solutions are known from 
calculus, but Gaston Julia had shown in 1917 that Newton’s method is a fruitful ground 
for the study of the iteration of functions of a complex variable z.  Chapter 19 of The 
Fractal Geometry of Nature Figure examines the iteration of z2 + c and other 
polynomials.  This end-paper relates to the iteration of the transcendental function z – 1 + 
Ce-z. 
 In Arthur Cayley’s pioneering global studies of iteration in 1879, the interest in 
iteration had arisen from the application of the Newton-Raphson method.  (Peitgen et al. 
tell the story, and illustrate it, in The Mathematical Intelligencer in 1984.)  Cayley began 
by solving z2 = C, which proved easy, then went on to try z3 = C, which stumped him by 
exhibiting three “gray areas: that he found no way of resolving.  Julia, in 1917, had found 
many acts about these areas, and John H. Hubbard had shown us his revealing earliest 
graph of the corresponding Julia set.  It was natural for us, in late 1980, to play with zp = 
C, and then view exp(z) = C as a suitable limit of zp = C for p→inf.  We made many 
interesting observations about this limit case, but the study was far form complete and 
publishable when we moved on to very different work. 
 Finally, and unfortunately, the non-fractal bold boundaries between the 
background and the solidly colored areas in the end-papers of The Fractal Geometry of 
Nature Figure are an artifact.  The study of transcendental functions’ iterates leads very 
quickly to enormous integers, hence soon reaches intrinsic limits beyond which the 
computer takes its own arbitrary actions. 
 
Devaney, Barnsley, and the Bremen Book, The Beauty of Fractals 
 
Out perception of the iteration of transcendental functions as a difficult and very rich 
topic was confirmed by several eminent mathematicians, such as Robert L. Devaney.  No 
wonder, therefore, that one should see striking resemblances between our end-papers and 
his beautiful and widely seen illustrations and films.  Bob’s papers on the iteration of 
transcendental functions had already brought admiring attention to him, but we did not 
become fast friends until we started bumping into each other constantly on the fractal Son 
et Lumière traveling shows. 
 The life orbit of Michael barnsley has also crossed mine, and then they stayed in 
the same fractal neighborhood.  The amusing background, in this instance, is in the public 
record, and I will not repeat it.  I first read about it in James Gleick’s book, Chaos: The 
Birth of a New Science.  There I found out how it came to be that Michael burst into my 
house one day, full of enthusiasm, and lovely tales.  Later, we held a few meetings at the 
Atlanta airport (of all places!), and since then it has been a pleasure to keep up with his 
work and that of his many associates. 
 Now back to the pictures of Julia and Mandelbrot sets in Figure The Fractal 
Geometry of Nature.  During the summer of 1984, we were tooling up to redo them in 
color, with Eriko Hironaka as programmer, when mail brought in, hot off the press, the 
June issue of the German magazine Geo.  We realized immediately that much of what we 
were proposing had already been achieved, in fact achieved beyond our aspirations, by 



Heainz-Otto Peitgen, Peter H. Richter, Dietmar Saupe and their associates.  Their fractal 
pictures in The Mathematical Intelligencer earlier in 1984 had been most welcome, but 
those in color had not yet supplied ample reason for enthusiasm.  The color pictures in 
the 1984 Geo showed a skilled and artistic eye, coupled with a sure hand, one that had 
gained experience but had not become lazy or hasty.  They were unmistakably the 
outcome of the search for perfection I had admired earlier in the work of Voss, and 
always attempt in my own. 
 I wrote to the Geo authors at the University of Bremen to congratulate them, to 
tell them of the change of plans their success had provoked, and to express the hope of 
meeting them soon.  They told me about a fractal exhibit they were planning, and for 
which they were preparing a catalogue that eventually led to their book Figure The 
Beauty of Fractals, and they asked me to write the personal contribution mentioned 
earlier in this paper.  That this book was fated not to come from me or my associates, it is 
still a delight that it came from them.  I gained these new friends when they invited me to 
Bremen in may 1985, to open the first showing of their exhibit, and I participated in this 
exhibit in several other cities as well.  Our joint appearances have since then have 
become too numerous to count.  There are no anecdotes to tell, only very pleasant events 
to remember. 
 
Conclusion 
 
I am reminded that, only a while ago (the sting has disappeared, but the memory 
remains), no one wanted to scan my early pictures for longer than a few minutes, and this 
would-be leader of a new trend had not a single follower.  Then, very slowly in memory, 
yet almost overnight in present perception, fractals became of so wide interest that 
Siggraph started devoting lectures, then full day courses to them.  The first makeshift 
appearance of fractals at Siggraph came in 1985 under my direction, the second in 1986 
under Peter Oppenheimer, and the third in 1987 and led to The Beauty of Fractals and 
this paper. 


